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Chapter 1.1. Systems of linear equations

Our aim is to revise the method of successive elimination for solving systems of
linear algebraic equations (brie�y, linear systems). A linear system may be written in the
most general form as

a11x1 + a12x2 + . . .+ a1nxn = b1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (0.1)

am1x1 + am2x2 + . . .+ amnxn = bm.

m is a number of equations, n is a number of unknowns. The system (1.1) is called homogeneous
if all free terms bj = 0. Matrix A of the system consists of coe�cients

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn

 .

The extended matrix (A|b) of the system is obtained by adding on the column of free
terms bj,

(A|b) =


a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
...

...
...

am1 am2 . . . amn bm

 .

A solution of system (1.1) is an ordered set of numbers (c1, c2, . . . , cn) such that each of
equations in (1.1) becomes an identity when the unknowns xi are replaced by ci. A system is
called incompatible if it does not have any solution. If a system has a solution it is called
compatible. If a system has the only solution it is called determined. If a system has more
than one solution it is called undetermined. Two systems are called equivalent if they have
the same set of solutions (the set of solutions is empty if the system is incompatible). Note
that any homogeneous system has the zero solution 0̄ = (0, . . . , 0). Thus, any homogeneous
system is compatible.

We will do elementary transformations of system (1.1) resulting in new equivalent
ones. An elementary transformation of the �rst type consists in adding the k-th
equation multiplied by an arbitrary number c to the i-th equation (i 6= k). Thus, we obtain
the new i-th equation

(ai1 + cak1)x1 + (ai2 + cak2)x2 + . . .+ (ain + cakn)xn = bi + cbk,

all equations except the i-th remain the same. So, we have new system

a′11x1 + a′12x2 + . . .+ a′1nxn = b′1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (0.2)

a′m1x1 + a′m2x2 + . . .+ a′mnxn = b′m.

Obviously, any solution of (1.1) is a solution of (1.2) as well. Evidently, system (1.1) may
be obtained from system (1.2) by the elementary transformation of the �rst type (to restore
the i-th equation of (1.1) it is enough to add the k-th equation of (1.2) multiplied by (−c)
to the i-th equation of (1.2)). It follows that systems (1.1) and (1.2) are equivalent. An
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elementary transformation of the second type of system (1.1) consists in the follows:
i-th and k-th equations interchange places and the other ones remain the same. Obviously,
the new system is equivalent to (1.1).

Applying elementary transformations we can reduce system (1.1) to echelon form (quasi-
triangular form). Using if necessary elementary transformation of the second type we may
assume that a11 6= 0 in system (1.1). Adding 1-th equation multiplied by ci = −ai1/a11 to
i-th equation i = 2, . . . ,m we obtain equivalent system

a′11x1 + a′12x2 + . . .+ a′1nxn = b′1,

a′2pxp + . . .+ a′2nxn = b′2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (0.3)

a′mpxp + . . .+ a′mnxn = b′m.

Thus, using 1-th equation we eliminate unknown x1 from all succeeding equations. Some
other unknowns might have disappeared as well. Note that the �rst equation in (1.3) is just
the same as in (1.1). After that applying if necessary elementary transformations of the
second type we may assume that a′2p 6= 0 in system (1.3) and using the second equation
eliminate xp from succeeding equations. The �rst and second equations remain the same.
Proceeding the process of elimination of unknowns as long as possible we obtain the following
system

ā11x1 + ā12x2 + . . .+ ā1nxn = b̄1,

ā2pxp + . . . . . . . . .+ ā2nxn = b̄2,

ā3qxq + . . .+ ā3nxn = b̄3,

. . . . . . . . . . . . . . . . . . . . . . . .

ārsxs + . . .+ ārnxn = b̄r, (0.4)

0 = b̄r+1,

. . . . . . . . . . . . . . . . . .

0 = b̄m.

Here ā11, ā2p, ā3q, . . . , ārs 6= 0, 1 < p < q < · · · < s ≤ n. We say that system (4) has
echelon form. It may happen that there are no equations of the form 0 = b̄.

In the process of successive elimination it is convenient to work with rows of extended
matrix of system (1.1) instead of equations.

Theorem 1 (i) Any linear system may be reduced to echelon form (1.4) by elementary
transformations.
(ii) A linear system is compatible if and only if its echelon form (1.4) does not contain
equations of the type 0 = b̄ where b̄ 6= 0.

Suppose that the echelon form (1.4) of system (1.1) does not contain equations of the type
0 = b̄ where b̄ 6= 0, i.e. (1.4)(as well as (1.1))is compatible. The unknowns x1, xp, xq, . . . , xs
are called pivotal or principal unknowns. The remain unknowns are called free unknowns.
Thus, there are r pivotal unknowns and n−r free unknowns. We can choose arbitrary values
of free variables and substitute them in system (1.4). Since ārs 6= 0 we can �nd the value of
xr from the r-th equation. Substitute this value for xr in the �rst, the second, ..., the (r-1)-th
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equations. Now we �nd the next pivotal unknown from the (r-1)-th equation. Proceeding this
procedure step by step from the bottom to the top we can �nd unique values for all principal
unknowns. Thus, the values of principal unknowns are uniquely determined by values of free
unknowns which may be chose arbitrary.

The procedure allows to �nd formulas expressing the principal unknowns through the
free unknowns. To avoid the abuse of notations assume that x1, . . . , xr are pivotal unknowns
and xr+1, . . . , xn are free unknowns. We can �nd formulas

x1 = f1(xr+1, . . . , xn), . . . , xr = fr(xr+1, . . . , xn).

Written as n-tuple they give the general solution of system (1.1)

X = (f1(xr+1, . . . , xn), . . . , fr(xr+1, . . . , xn), xr+1, . . . , xn).

Corollary 1 (i) A compatible linear system is determined if and only if r = n.
(ii) A homogeneous linear system has a non-zero solution if m < n.

Example 1. Find the formula of general solution of linear system

6x1 + 3x2 + 2x3 + 3x4 + 4x5 = 5,

4x1 + 2x2 + x3 + 2x4 + 3x5 = 4, (0.5)

4x1 + 2x2 + 3x3 + 2x4 + x5 = 0,

2x1 + x2 + 7x3 + 3x4 + 2x5 = 1.

We will work with rows of extended matrix of the system
6 3 2 3 4 5
4 2 1 2 3 4
4 2 3 2 1 0
2 1 7 3 2 1

 .

The �rst and forth rows (equations) interchange places
2 1 7 3 2 1
4 2 1 2 3 4
4 2 3 2 1 0
6 3 2 3 4 5

 .

Add the �rst row (equation) multiplied by (−2) to the second and the third rows (equations)
and add the 1-th row multiplied by (−3) to the 4-th

2 1 7 3 2 1
0 0 −13 −4 −1 2
0 0 −11 −4 −3 −2
0 0 −19 −6 −2 2

 .

To simplify calculations add the third row multiplied by (−1) to the second and the forth
rows 

2 1 7 3 2 1
0 0 −2 0 2 4
0 0 −11 −4 −3 −2
0 0 −8 −2 1 4

 .
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Add the second row multiplied by (−11/2) to the third row and add the second row multiplied
by (−4) to the forth rows 

2 1 7 3 2 1
0 0 −2 0 2 4
0 0 0 −4 −14 −24
0 0 0 −2 −7 −12

 .

Add the third row multiplied by (−1/2) to the forth row
2 1 7 3 2 1
0 0 −2 0 2 4
0 0 0 −4 −14 −24
0 0 0 0 0 0

 .

The last matrix is the extended matrix of system

2x1 + x2 + 7x3 + 3x4 + 2x5 = 1,

−2x3 + 2x5 = 4,

−4x4 − 14x5 = −24, (0.6)

0 = 0.

We can see that system (1.6) has an echelon form, it is compatible, x1, x3, x4 are principal
unknowns, x2, x5 are free unknowns. From the third equation of (1.6) x4 = (−7/2)x5 + 6,
from the second equation x3 = x5 − 2. Substituting the formulas for x3 and x4 in the �rst
equation obtain x1 = (−1/2)x2 + 3/4x5 − 3/2. Thus,

X = (−1/2x2 + 3/4x5 − 3/2, x2, x5 − 2, −7/2x5 + 6, x5)

is a general solution of (1.5). To obtain a particular solution of (1.5) choose values for free
unknowns, say x2 = 2, x5 = −1, and substitute them to the formula of general solution. We
will have solution (−13/4, 2, −3, 19/2, −1).
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Chapter 1.2. Symmetric group. Elementary group theory

LetM be a �nite set with n elements. Since we does not concern the nature of its elements
we will identify M and the set of numbers {1, 2, . . . , n}. A bijective mapping (or a one-
to-one correspondence)f : M −→ M is called a permutation of degree n. The set of all
permutations of degree n is denoted by Sn. The permutation may be written as

f =

(
1 2 . . . n
i1 i2 . . . in

)
where f(t) = it. Obviously, {i1, i2, . . . , in} = {1, 2, . . . , n}. There are n! di�erent permutations
of degree n, |Sn| = n!. For mappings g : X −→ Y, f : Y −→ Z a new mapping f◦g : X −→ Z
called the composition of f and g is de�ned, f ◦ g(t) = f(g(t)), t = 1, 2, . . . , n. In
particular, if f, g ∈ Sn, then f ◦ g ∈ Sn and for

g =

(
1 2 . . . n
j1 j2 . . . jn

)

f ◦ g =

(
1 2 . . . n

f(j1) f(j2) . . . f(jn)

)
.

Example 2. Let

f =

(
1 2 3 4 5
3 1 5 2 4

)
, g =

(
1 2 3 4 5
2 4 3 5 1

)
.

Then

f ◦ g =

(
1 2 3 4 5

f(2) f(4) f(3) f(5) f(1)

)
=

(
1 2 3 4 5
1 2 5 4 3

)
.

Denote by e the identity mapping e(t) = t, t = 1, 2, . . . , n. Evidently, e ◦ f = f ◦ e = f
for any f ∈ Sn. For any mappings f : A −→ B, g : B −→ C, h : C −→ D the associative low
is ful�lled (h ◦ g) ◦ f = h ◦ (g ◦ f). In particular, the associative low holds for permutations
f, g, h ∈ Sn. Any permutation f has an inverse f−1, f−1(f(i)) = i, f(f−1(i)) = i, i.e.

f−1 ◦ f = f ◦ f−1 = e. For example, for f =

(
1 2 3 4 5
3 1 5 2 4

)
, f−1 =

(
1 2 3 4 5
2 4 1 5 3

)
.

Let G be a non-empty set. A �xed mapping µ : G×G −→ G is called a binary operation

on G.

Let G be a non-empty set G with a binary operation µ. Denote µ(a, b) by a ∗ b. We
will denote binary operation on G by ∗ as well. A binary operation is called associative if
(a ∗ b) ∗ c = a ∗ (b ∗ c) for any a, b, c ∈ G. An element e ∈ G is called a unit element
if e ∗ a = a ∗ e = a for any a ∈ G. A set with a binary operation can have only one unit
element.

A set G with an associative binary operation ∗ is called a semigroupand may be denoted
by (G, ∗). A semigroup with a unit is called a monoid and may be denoted by (G, ∗, e).
An element a of a monoid G is called invertible if there exists an element b ∈ G such that
a∗b = b∗a = e, here e is a unit of G.Such an element b is called an inverse of a. An element
a of monoid G can have only one inverse. The inverse of a is denoted by a−1.

A monoid G where any element is invertible is called a group. Thus, a group G is a
non-empty set with a binary operation ∗ satisfying the following axioms:
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(1)the operation ∗ is associative, i.e. (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G,
(2) G has a unit element e, i.e. such an element that a ∗ e = e ∗ a = a for every a ∈ G,
(3) any element a ∈ G has an inverse a−1 ∈ G, i.e. for every a ∈ G there exists such an
element a−1 ∈ G that a ∗ a−1 = a−1 ∗ a = e. The cardinality of a group (semigroup, monoid)

G is called the order of G. Thus, Sn is a group of order n!.
Remark.Di�erent notations can be used for binary operation onG, for example ◦, ×, +, ·, �
etc. If binary operation is denoted by + then the corresponding semigroup (monoid, group)
G is named additive . In this particular case we mean 0 (null element, zero) instead of
e (unit) and the opposite element −a instead of the inverse a−1. If we use · for a binary
operation then (G, ·) is named multiplicative semigroup (monoid, group). In this case the
sign · in the product will be often omitted, a · b = ab.

Now we can see that (Sn, ◦) is a group. The identity permutation e is the unit in Sn.
The inverse mapping f−1 is the inverse of f in the group Sn. The group (Sn, ◦) is called a
symmetric group. The sign ◦ in the product of permutations will be omitted.

Let k1, k2, . . . , kr be an ordered set of symbols ki ∈ M = {1, . . . , n}. A permutation
f such that f(k1) = k2, f(k2) = k3, . . . , f(kr−1) = kr, f(kr) = k1 and f(j) = j when
j 6= ki, i = 1, . . . , r is called a cycle of length r and is denoted by (k1k2, . . . kr). A cycle of
length 2 is called a transposition.

Two cycles f = (k1k2 . . . kr) and g = (p1p2 . . . ps) are called independent (disjoint) if
{k1, . . . , kr} ∩ {p1, . . . , ps} = ∅. Two independent cycles commute, fg = gf .

Theorem 2 Any permutation f ∈ Sn is a product of independent cycles f = C1C2 · · ·Cm.
This decomposition is unique up to the order of factors.

Example 3. Let g =

(
1 2 3 4 5 6 7
2 6 3 7 4 1 5

)
. Take any symbol really moved by g, say 1,

f(1) = 2, f(2) = 6, f(6) = 1 and we obtain the cycle (126). The next symbol really moved
by g is 4, f(4) = 7, f(7) = 5, f(5) = 4. We obtain the second cycle (475). We considered
all symbols really moved by g. Thus, g = (126)(475).

The cycle (12 . . .m) is equal to the following product of transpositions

(12 . . .m) = (12)(23) . . . (m− 1,m).

Note that this product contains m − 1 factors. Now it follows from Theorem 3 that any
permutation f ∈ Sn has a decomposition into a product of transpositions.

Theorem 3 Let f = t1 . . . tk be a decomposition of f ∈ Sn into a product of transpositions.
The number εf = (−1)k does not depend on which decomposition is used. Moreover, εfg =
εfεg.

The number εf is called the parity ( the sign) of permutation f . A permutation f is
called even if εf = 1 and odd one if εf = −1. It follows from the theorem that the product
of even permutations is an even permutation and the inverse of even permutation is even as
well. Therefore, the set of even permutations with respect to multiplication of permutations
as binary operation is a group. The group of even permutations of degree n is called the
alternating group and denoted by An. Evidently, |An| = 1

2
n!.

A non-empty subset H in a group (G, ∗) is called a subgroup of G if h1 ∗ h2 ∈ H and
h−1 ∈ H for any h1, h2, h ∈ H. Thus, (H, ∗) is a group. We can see that An is a subgroup
of Sn.
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Let S be a subset of a group G. If any element g ∈ G can be written as a product of
elements of S and inverses of elements of S then we say that G is generated by S. In
this case S is called the set of generators of G. Thus, the set of transpositions is a set of
generators of Sn.

Let G and H be groups. A mapping ϕ : G −→ H is called a homomorphism of groups if
ϕ(g1g2) = ϕ(g1)ϕ(g2) for any g1, g2 ∈ G. According to the theorem the mapping of parity
ε : Sn −→ {±1} is a homomorphism of groups.
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Section V. Problems for selfstudy

1. Find the formula of general solution of linear system

x1 + 2x2 + 3x3 − 2x4 + x5 = 4,

3x1 + 6x2 + 5x3 − 4x4 + 3x5 = 5,

x1 + 2x2 + 7x3 − 4x4 + x5 = 11,

2x1 + 4x2 + 2x3 − 3x4 + 3x5 = 6.

2. Find the formula of general solution and a particular solution of linear system

6x1 + 4x2 + 5x3 + 2x4 + 3x5 = 1,

3x1 + 2x2 + 4x3 + x4 + 2x5 = 3,

3x1 + 2x2 − 2x3 + x4 = −7,

9x1 + 6x2 + x3 + 3x4 + 2x5 = 2.

3. Find the formula of general solution and a particular solution of linear system

6x1 + 4x2 + 5x3 + 2x4 + 3x5 = 1,

3x1 + 2x2 + 4x3 + x4 + 2x5 = 3,

3x1 + 2x2 − 2x3 + x4 = −7,

9x1 + 6x2 + x3 + 3x4 + 2x5 = 2.

4. Solve the linear system

10x1 + 23x2 + 17x3 + 44x4 = 25,

15x1 + 35x2 + 26x3 + 69x4 = 40,

25x1 + 57x2 + 42x3 + 108x4 = 65,

30x1 + 69x2 + 51x3 + 133x4 = 95.

5. Find the sign of permutation

f =

(
1 2 3 4 5 6
6 5 1 4 2 3

)
.

6. Find the sign of permutation

f =

(
1 2 3 4 5 6 7 8
8 1 3 6 5 7 4 2

)
.

7. Find the product of permutations (15)(234).
8. Find the product (

1 2 3 4 5
2 4 5 1 3

)(
1 2 3 4 5
5 3 4 1 2

)
.

9. Find the product (
1 2 3 4 5
3 4 5 1 2

)3

.
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10. Find a permutation X such that AXB = C where

A =

(
1 2 3 4 5 6 7
7 3 2 1 6 5 4

)
, B =

(
1 2 3 4 5 6 7
3 1 2 7 4 5 6

)
,

C =

(
1 2 3 4 5 6 7
5 1 3 6 4 7 2

)
.

11. Decompose the permutation into a product of independent cycles(
1 2 3 4 5 6 7 8 9
5 8 9 2 1 4 3 6 7

)
.

12. Find the values for i and k such that the product

a47a63a1ia55a7ka24a31

enters to a determinant of order 7 with the sign +.
13. Compute the determinant ∣∣∣∣∣∣∣∣

2 −5 1 2
−3 7 −1 4
5 −9 2 7
4 −6 1 2

∣∣∣∣∣∣∣∣ .
14. Compute the determinant ∣∣∣∣∣∣∣∣

35 59 71 52
42 70 77 54
43 68 72 52
29 49 65 50

∣∣∣∣∣∣∣∣ .
15. Compute the determinant ∣∣∣∣∣∣∣∣

5 1 2 7
3 0 0 2
1 3 4 5
2 0 0 3

∣∣∣∣∣∣∣∣ .
16. Compute the determinant ∣∣∣∣∣∣∣∣∣∣

1 n n . . . n
n 2 n . . . n
n n 3 . . . n
. . . . . . .
n n n . . . n

∣∣∣∣∣∣∣∣∣∣
.

17. Solve the system of equations using Cramer's rule

2x1 + 2x2 − x3 + x4 = 4,

4x1 + 3x2 − x3 + 2x4 = 6,

8x1 + 5x2 − 3x3 + 4x4 = 12,

3x1 + 3x2 − 2x3 + 2x4 = 6.
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18. Find the product of matrices 5 8 −4
6 9 −5
4 7 −3

 ·
 3 2 5

4 −1 3
9 6 5

 .

19. Find the inverse of the matrix  2 5 7
6 3 4
5 −2 −3

 .

20. Solve the matrix equation 2 −3 1
4 −5 2
5 −7 3

 ·X ·
 9 7 6

1 1 2
1 1 1

 .

21. Compute expressions

a) (2 + i)(3 + 7i)− (1 + 2i)(5 + 3i), b)
(5 + i)(7− 6i)

3 + i
, c) i77, d) in, n ∈ Z.

22. Find the trigonometric form of complex number:

a) 7; b) 1 + i; c) 1− i; d) 1 + i
√

3; e)
√

3− i.

23. Compute the expressions:

a) (1 + i)1000, b)

(√
3 + i

1− i

)
.

24. Write as polynomials of sinx and cosx

sin 4x, cos 4x.

25. Compute
a)

6
√
i; b)

3
√

1; c)
6
√

1; d) 3
√

1 + i; e) 6
√
−27.

27. Let εk = cos 2πk
n

+ i sin 2πk
n
, 0 ≤ k < n. Prove that

a) n
√

1 = {ε0, ε1, . . . , εn−1};
b) εk = εk1, k = 0, 1, . . . , n− 1;
c) n
√

1 is a cyclic group of order n with respect to the multiplication of complex numbers.
28. Find the rank of the matrix  8 2 2 −1 1

1 7 4 −2 5
−2 4 2 −1 3

 .

29. Find a basis of the system of vectors
a1 = (5, 2, −3, 1), a2 = (4, 1, −2, 3), a3 = (1, 1, −1, −2)
a4 = (3, 4, −1, 2), a5 = (7, −6, , −7, 0).
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30. Find a fundamental system of solutions of the homogeneous linear system

x1 + x2 − 2x3 + 2x4 = 0,

3x1 + 5x2 + 6x3 − 4x4 = 0,

4x1 + 5x2 − 2x3 + 3x4 = 0,

3x1 + 8x2 + 24x3 − 19x4 = 0.

31. Find the sum and the intersection of vector spaces U1 =< a1, a2, a3 >, U2 =< b1, b2, b3 >
where

a1 = (1, 2, 1, −1), a2 = (2, 3, 1, 0), a3 = (1, 2, 2, −3),

b1 = (1, 1, 1, 1), b2 = (1, 0, 1, −1), b3 = (1, 3, 0, −4).

32. Find a basis of the kernel of the linear mapping given by matrix 3 5 −4 2
2 4 −6 3
11 17 −8 4

 .

33. Find eigenvalues and eigenvectors of linear transformations given by matrices

a)

 2 −1 2
5 −3 3
−1 0 −2

 , b)

 0 1 0
−4 4 0
−2 1 2

 .

34. The linear transformation ϕ has the matrix

(
3 5
4 3

)
in the basis a1 = (1, 2), a2 = (2, 3).

The linear transformation ψ has the matrix

(
4 6
6 9

)
in the basis b1 = (3, 1), b2 = (4, 2).

Find the matrices of ϕ+ ψ and ϕ · ψ in the basis b1, b2.
35. Find the canonical form of the following quadratic forms
a) x2

1 + x2
2 + 3x2

3 + 4x1x2 + 2x1x3 + 2x2x3,
b) x1x2 + x1x3 + x2x3.
36. Apply the orthogonalization process to the system of vectors

a1 = (1, 2, 2, −1), a2 = (1, 1, −5, 3), a3 = (3, 2, 8, −7).

37. Find the orthogonal projection of a vector x on a subspace U .
x = (7, −4, −1, 2), U is the subspace of solutions of linear system

2x1 + x2 + x3 + 3x4 = 0,

3x1 + 2x2 + 2x3 + x4 = 0,

x1 + 2x2 + 2x3 − 9x4 = 0.

38. Reduce the quadratic form to the principal axes
6x2

1 + 5x2
2 + 7x2

3 − 4x1x2 + 4x1x3.
39. Find the orthogonalized basis consisting of eigenvectors of the unitary operator given by

the matrix 1√
3

(
1 + i 1
−1 1− i

)
.

14



40. Investigate properties of binary operations on a set M :
a) M = N, x ∗ y = xy;
b) M = N, x ∗ y = gcd(x, y);
c) M = Z, x ∗ y = x− y;
d) M = R, x ∗ y = x2 + y2.
41. Show that G = [0, 1) is a group with respect to binary operation ⊕ where a⊕ b = {a+ b}
is the fractional part of a+ b.
42. Let (G, ·) be a group. Show that (G, ∗) is a group where a ∗ b = b · a.
43. Find all subgroups in a) the four-element Klein group b) in S3, c) in A4.
45. Find the order of an element of a group:

a) π =

(
1 2 3 4 5 6 7 8 9 10
4 3 7 1 2 5 6 10 9 8

)
∈ S10;

b) −1
2
−
√

3
2
i ∈ C∗ where C∗ = C \ {0};

c)

(
0 i
1 0

)
∈ GL2(C);

d)

(
1̄ 1̄
1̄ 2̄

)
∈ GL2(F3);

e)

(
1̄ 2̄
0̄ 1̄

)
∈ GL2(Z6).

46. Find elements of order 2 in the groups:
a) C∗, b) S5, c) A5.
47. Prove that any group of an even order contains an element of order 2.
48. Find all homomorphisms among the following mappings f : C∗ −→ R∗ :
a) f(z) = |z|, b) f(z) = 2|z|, c) f(z) = 1

|z| , d) f(z) = 1, e) f(z) = |z|2, f) f(z) = 1 + |z|,
g) f(z) = 2. 49. �nd all homomorphisms Z6 −→ Z6.
50. Find the group of automorphisms of a group:
a) Z, b) Zp, p is a prime number, c) S3.
51. Prove that group S3 acts by conjugations on the subsetM = {(12)(34), (13)(24), (14)(23)}.
Thus, the homomorphism Φ : S4 −→ S3 is de�ned. Find KerΦ and =|Phi.
52. Find the quotient group:
a) R∗/R+;
b) C∗/R+;
c) C∗/T1 where T1 = {z ∈ C||z| = 1};
d) T1/Un where Un = {z ∈ C|zn = 1};
e) GLn(R)/SLn(R);
f) 4Z/12Z.
53. Using Sylow theorems prove that
a) any group of order 15 is a cyclic group;
b) any group of order 36 is not a simple group.
54. Prove that any p-group is solvable.
55. Decompose the groups into the direct sum:
a) Z6, b) Z12, c) Z60.
56. Prove that the group Dn =< a, b, ||a2, b2, (ab)n > is a group of order 2n.
57. Prove that

G =< a, b||a2, b2 >∼= H =

{(
±1 n
0 1

)
|n ∈ Z

}
.

58. Find all up to isomorphisms abelian group of order 27.
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59. Find all up to isomorphism abelian groups of order 36.
60. Find out if the following groups are isomorphic:
a) Z6 ⊕ Z36 and Z12 ⊕ Z18;
b) Z6 ⊕ Z36 and Z9 ⊕ Z24.
61. Which of the following sets of numbers form a ring with respect to the usual operations
of addition and multiplication:
1) Z, 2) nZ, 3) the set of non-negative integers, 4) Q, 5) {x + y

√
2|x, y ∈ Q}, 6) {x +

y 3
√

2|x, y ∈ Q}, 7) {x+ y 3
√

2 + z 3
√

4|x, y, z ∈ Q}, 8) Z[i] = {x+ iy|x, y ∈ Z}?
62. Which of the following sets of functions form a ring with respect to the usual operations
of addition and multiplication:
1) the set C[a, b] of all continues real functions on the closed interval [a, b];
2) the set of all real functions equal to zero on a �xed subset A ⊂ R;
3) the set of all trigonometric polynomials

{a0 +
n∑
k=1

(ak cos kx+ bk sin kx))|nN, ak, bk ∈ R}.

63. Find all ideals of rings Z, K[x] where K is a �eld.
64. Show that the rings Z[x] and K[x, y] (K is a �eld) are not principal ideals rings.
65. Prove that
1) F [x]/(x− a) ∼= F where F is a �eld;
2) R[x]/(x2 + 1) ∼= C;
3) R[x]/(x2 + x+ 1) ∼= C.
66. Let K be a �eld. Show that the linear mapping
ϕ : Ms(K) ⊗K Mt(K) −→ Mst(K), such that ϕ(Eij ⊗ Erk) = Ei+s(r−1),j+s(k−1), 1 ≤ i, j ≤
s, 1 ≤ r, k ≤ t is an isomorphism of algebras.
67. Prove that the �elds Q, R have no automorphisms di�erent from the identity mapping.
68. For what n = 2, 3, 4, 5, 6, 7, 8, 9 there exists a �eld consisting of n elements?
69. Solve the equations in Z11; 1) x

2 = 5, 2) x7 = 7, 3) x3 = a, 4) x2 + 3x+ 7 = 0.
70. Find the minimal polynomials for elements
1)
√

2 over Q, 2)
√

2 +
√

3 over Q, 3) 1 +
√

2 over Q(
√

2 +
√

3).
71. Find the Galois group of �elds Q(

√
2), Q(

√
2 +
√

3), Q( 3
√

2) over Q.
72. Find all commutative ideals of the group algebra C[G] for 1) G = S3, 2) G = D5.
73. Find a basis of the center of the group algebras of the groups S3, A4.
74. Find the character of the representation ρ of Sn on Rn such that ρ(π0(ei) = eπ(i) where
{e1, . . . , en} is the standard basis of Rn.
75. Create the table of characters of the group S3.
76. Let A be an algebra over a �eld K. A linear mapping D : A −→ A such that D(ab) =
D(a)b + aD(b) is called a derivation of algebra A. Denote by DerA the linear space of all
derivations of an algebra A. Show that DerA is a Lie algebra with respect to multiplication
[D1, D2] = D1 ◦D2 −D2 ◦D1.
77. Let A = A0̄ ⊕ A1̄ be a two graded associative algebra over a �eld K, i.e. AiAj ⊂ Ai+j
(the sum modulo 2). Let [a, b] = ab− (−1)ijba where a ∈ Ai, b ∈ Aj.
Prove that for any homogeneous elements ai ∈ Ai, b ∈ Aj, c ∈ Ak we have
1) [a, b] = −(−1)ij[a, b] (graded skew-symmetric),
2) (−1)ki[a, [b, c]] + (−1)ij[b, [c, a]] + (−1)jk[c, [a, b]] = 0 (graded Jacobi identity).
A 2-graded algebra with a multiplication satisfying conditions 1) - 2) is called a Lie superalgebra.
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