МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
Нижегородский государственный университет им. Н.И. Лобачевского
Эконометрика
Учебно-методическое пособие

Рекомендовано методической комиссией факультета ФИС 

для иностранных студентов, обучающихся в ННГУ по направлению подготовки 38.04.02 «Менеджмент» (Экономика и управление финансовыми институтами, магистратура)

 на английском языке
Нижний Новгород

2014
УДК 330.43(072)
ББК 65в631р30
ЭКОНОМЕТРИКА: учебно-методическое пособие/ Составитель А.Л. Сочков. – Нижний Новгород: Нижегородский госуниверситет, 2014. – 53 с.

Рецензент: к.э.н. И.Б. Удалова
В настоящем учебно-методическом пособии изложены тезисы лекций по ключевым темам дисциплины «Эконометрика».
Учебно-методическое пособие предназначено для студентов факультета иностранных студентов, обучающихся в магистратуре по направлению подготовки 38.04.02 «Менеджмент» (Экономика и управление финансовыми институтами)  на английском языке.

УДК 330.43(072)
ББК 65в631р30
© Нижегородский государственный 

университет им. Н.И. Лобачевского,
составление, 2014
Ministry of  Education and Science of  the Russian Federation

State educational institution of higher education

«Lobachevsky State University of Nizhni Novgorod»
Econometrics
Tutorial
Recommended by the Methodical Commission
 of the Faculty of  International Students for International Students, studying at the M.Sc. Programme 38.04.02. Management (Profile of training - Economics and Management of Financial Institutions) 
in English
Nizhni Novgorod
2014
CONTENTS

Preface…………………………………………………………………………………6
1. Random variables and sampling theory…………………………………………….7
1.1. Discrete Random Variables………………………………………………...7
1.2. Expected Values of Discrete Random Variables…………………………...8
1.3. Expected Values of Functions of Discrete Random Variables……………..9
1.4. Expected Value Rules………………………………………………………9
1.5. Independence of Random Variables………………………………………10
1.6. Population Variance of a Discrete Random Variable……………………..10
1.7. Probability Density………………………………………………………..11
1.8. Expected Value and Variance of a Continuous Random Variable………. 14
1.9. Fixed and Random Components of a Random Variable………………….15
1.10. Estimators………………………………………………………………..15
1.11. Estimators Are Random Variables………………………………………16
1.12. Unbiasedness…………………………………………………………….18
1.13. Efficiency………………………………………………………………...19
1.14. Conflicts between Unbiasedness and Minimum Variance………………20
1.15. The Effect of Increasing the Sample Size on the Accuracy of an Estimate..............................................................................................................22
1.16. Consistency………………………………………………………………23
2. Covariance, variance, and correlation……………………………………………..25
2.1. Sample Covariance………………………………………………………..25
2.2. Some Basic Covariance Rules…………………………………………….25
2.3. Population Covariance…………………………………………………….26
2.4. Sample Variance…………………………………………………………..27
2.5. Variance Rules…………………………………………………………….27
2.6. Population Variance of the Sample Mean………………………….......…28
2.7. The Correlation Coefficient……………………………………………….28
3. Simple regression analysis………………………………………………………...30
3.1. The Simple Linear Model…………………………………………………30
3.2. Least Squares Regression…………………………………………………32
3.3. Least Squares Regression with One Explanatory Variable……………….33
3.4. Interpretation of a Regression Equation…………………………………..34
3.5. Goodness of Fit……………………………………………………………34
4. Properties of the regression coefficients and hypothesis testing…………………..37
4.1. The Random Components of the Regression Coefficients………………..37
4.2. A Monte Carlo Experiment……………………………………………….38
4.3. Assumptions Concerning the Disturbance Term………………………….38
4.4. Unbiasedness of the Regression Coefficients……………………………..40
4.5. Precision of the Regression Coefficients………………………………….41
4.6. The Gauss–Markov Theorem……………………………………………42
4.7. Testing Hypotheses Relating to the Regression Coefficients……………43
4.8. Confidence Intervals……………………………………………………..47
4.9. One-Tailed t Tests………………………………………………………..48
4.10. The F Test of Goodness of Fit…………………………………………..50
4.11. Relationship between the F Test of Goodness of Fit and the t Test on the Slope Coefficient ……………………………………………………………..51
References…………………………………………………………………………...53
PREFACE

Literally speaking, the word “econometrics” means “measurement in economics”. This is too broad a definition to be of any use because most of economics is concerned with measurement. We measure our gross national product, employment, money supply, exports, imports, price indexes, and so on. What we mean by econometrics is:

The application of statistical and mathematical methods to the analysis of economic data, with a purpose of giving empirical content to economic theories and verifying them or refuting them [3].
In this respect econometrics is distinguished from mathematical economics, which consists of the application of mathematics only, and the theories derived need not necessarily have an empirical content.

The present tutorial is meant for international students studying econometrics in the framework of the M.Sc. Programme 38.04.02. Management (Profile of training with instruction in English - Economics and Management of Financial Institutions). Since the students can have different levels of economic and mathematical knowledge, the manual is meant to familiarize them with some of introductory chapters of econometrics, explaining them with very simple models without cluttering up the exposition with too much algebraic detail. Where proofs involve complicated expressions they are omitted and appropriate references are given. The book also contains several examples illustrating the techniques at each stage. 
Chapters 1 and 2 present a review of some basic results in statistics. The last two chapters discuss the simple regression analysis, properties of the regression coefficients and hypothesis testing. The tutorial explains these topics with simple models so that students who have not had exposure to advanced texts and advanced courses in econometrics can still learn them and use them. Throughout, an attempt has been made to explain complicated material in simple terms. 
The tutorial has been written on the grounds of C. Dougherty, Introduction to Econometrics, so we recommend it also to our students [1, 2].
1. RANDOM VARIABLES AND SAMPLING THEORY

1.1. Discrete Random Variables

We shall begin with discrete random variables. A random variable is any variable whose value cannot be predicted exactly. A discrete random variable is one that has a specific set of possible values. An example is the total score when two dice are thrown. An example of a random variable that is not discrete is the temperature in a room. It can take any one of a continuing range of values and is an example of a continuous random variable. We shall come to these later in this book.

Continuing with the example of the two dice, suppose that one of them is white and the other black. When they are thrown, there are 36 possible experimental outcomes, since the white one can be any of the numbers from 1 to 6 and the black one likewise. The random variable defined as their sum, which we will denote X, can take only one of 11 values – the numbers from 2 to 12. The relationship between the experimental outcomes and the values of this random variable is given in Table 1.1.

Table 1.1
Outcomes in the example with two dice
	white
	black

	
	1
	2
	3
	4
	5
	6

	1
	2
	3
	4
	5
	6
	7

	2
	3
	4
	5
	6
	7
	8

	3
	4
	5
	6
	7
	8
	9

	4
	5
	6
	7
	8
	9
	10

	5
	6
	7
	8
	9
	10
	11

	6
	7
	8
	9
	10
	11
	12


Assuming that the dice are fair, we can use Table 1.1 to work out the probability of the occurrence of each value of X. Since there are 36 different combinations of the dice, each outcome has probability 1/36. {White = 1, black = 1} is the only combination that gives a total of 2, so the probability of X = 2 is 1/36. To obtain X = 7, we would need {white = 1, black = 6} or {white = 2, black = 5} or {white = 3, black = 4} or {white = 4, black = 3} or {white = 5, black = 2} or {white = 6, black = 1}. In this case, the probability of throwing 7 is 6/36. All the probabilities are given in Table 1.2. 
Table 1.2
Probability distribution for X
	Value of X
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	Frequency
	1
	2
	3
	4
	5
	6
	5
	4
	3
	2
	1

	Probability
	1/36
	2/36
	3/36
	4/36
	5/36
	6/36
	5/36
	4/36
	3/36
	2/36
	1/36


If you add all the probabilities together, you get exactly 1. This is because it is 100 percent certain that the value must be one of the numbers from 2 to 12.
The set of all possible values of a random variable is described as the population from which it is drawn. In this case, the population is the set of numbers from 2 to 12.

1.2. Expected Values of Discrete Random Variables

The expected value of a discrete random variable is the weighted average of all its possible values, taking the probability of each outcome as its weight. You calculate it by multiplying each possible value of the random variable by its probability and adding. In mathematical terms, if the random variable is denoted X, its expected value is denoted E(X).

Let us suppose that X can take n particular values x1, x2, ..., xn and that the probability of xi is pi. Then
E(X) = x1p1 + … + xnpn = 
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(1.1)
In the case of the two dice, the values x1 to xn were the numbers 2 to 12: x1 = 2, x2 = 3, ..., x11 = 12, and p1 = 1/36, p2 = 2/36, ..., p11 = 1/36. The easiest and neatest way to calculate an expected value is to use a spreadsheet. Let us see Table 1.3. 

Table 1.3

Expected Value of X, Example with Two Dice
	X
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	p
	1/36
	2/36
	3/36
	4/36
	5/36
	6/36
	5/36
	4/36
	3/36
	2/36
	1/36

	Xp
	2/36
	6/36
	12/36
	20/36
	30/36
	42/36
	40/36
	36/36
	30/36
	22/36
	12/36

	E(X)
	E(X) = x1p1 + … + xnpn = 
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 = 252/36 = 7


As you can see from the table, the expected value is equal to 7.

Before going any further, let us consider an even simpler example of a random variable, the number obtained when you throw just one die. There are six possible outcomes: x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5, x6 = 6. Each has probability 1/6. Using these data to compute the expected value, you find that it is equal to 3.5. Thus in this case the expected value of the random variable is a number you could not obtain at all.

The expected value of a random variable is frequently described as its population mean. In the case of a random variable X, the population mean is often denoted by μX, or just μ, if there is no ambiguity.

1.3. Expected Values of Functions of Discrete Random Variables

Let g(X) be any function of X. Then E[g(X)], the expected value of g(X), is given by
E[g(X)] = g(x1)p1 + … + g(xn)pn = 
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(1.2)
where the summation is taken over all possible values of X. Let us see an example given in Table 1.4.
Table 1.4.
Expected Value of X2, Example with Two Dice
	X
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	p
	1/36
	2/36
	3/36
	4/36
	5/36
	6/36
	5/36
	4/36
	3/36
	2/36
	1/36

	X2
	4
	9
	16
	25
	36
	49
	64
	81
	100
	121
	144

	X2p
	0,11
	0,50
	1,33
	2,78
	5,00
	8,17
	8,89
	9,00
	8,83
	6,72
	4,00

	E[g(X)]
	E[g(X)] = g(x1)p1 + … + g(xn)pn = 
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 = 54,83


In the first line, we write down all the values that X can take. In the second, we write down the corresponding probabilities. In the third, we calculate the value of the function for the corresponding value of X. In the fourth, we multiply lines 2 and 3. The answer is given by the total of line 4.

Table 1.4 shows the calculation of the expected value of X2 for the example with two dice. You might be tempted to think that this is equal to μ2, but this is not correct. E(X2) is 54.83. The expected value of X is equal to 7. Thus it is not true that E(X2) is equal to μ2, which means that you have to be careful to distinguish between E(X2) and [E(X)]2 (the latter being E(X) multiplied by E(X), that is, μ2).

1.4. Expected Value Rules

There are three rules that we are going to use over and over again. They are virtually self-evident, and they are equally valid for discrete and continuous random variables.
Rule 1. The expected value of the sum of several variables is equal to the sum of their expected values. For example, if you have three random variables X, Y, and Z,
E(X + Y + Z) = E(X) + E(Y) + E(Z) .



(1.3)
Rule 2. If you multiply a random variable by a constant, you multiply its expected value by the same constant. If X is a random variable and b is a constant,
E(bX) = bE(X) .





(1.4)
Rule 3. The expected value of a constant is that constant. For example, if b is a constant,

E(b) = b .






(1.5)
Although the proof of Rules is quite easy, we will omit it here (see [2]). Putting the three rules together, you can simplify more complicated expressions. For example, suppose you wish to calculate E(Y), where Y = b1 + b2X and b1 and b2 are constants. Then,
E(Y) = E(b1 + b2X) = E(b1) + E(b2X) = b1 + b2E(X)
.

(1.6)

Therefore, instead of calculating E(Y) directly, you could calculate E(X) and obtain E(Y) from equation (1.6).

1.5. Independence of Random Variables

Two random variables X and Y are said to be independent if E[g(X)h(Y)] is equal to E[g(X)] E[h(Y)] for any functions g(X) and h(Y). Independence implies, as an important special case, that E(XY) is equal to E(X)E(Y).

1.6. Population Variance of a Discrete Random Variable

In this text there is only one function of X in which we shall take much interest, and that is its population variance, a useful measure of the dispersion of its probability distribution. It is defined as the expected value of the square of the difference between X and its mean, that is, of (X – μ)2, where μ is the population mean. It is usually denoted pop.var(X) or σ2X , with the subscript being dropped when it is obvious that it is referring to a particular variable.
 σ2X = E[(X – μ)2] = (x1 - μ)2p1 + … + (xn - μ)2pn = 
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From σ2X one obtains σX , the population standard deviation, an equally popular measure of the dispersion of the probability distribution; the standard deviation of a random variable is the square root of its variance.

We will illustrate the calculation of population variance with the example of the two dice. Since μ = E(X) = 7, (X – μ)2 is (X – 7)2 in this case. We shall calculate the expected value of (X – 7)2 using Table 1.5. An extra line, (X – μ), has been introduced as a step in the calculation of (X – μ)2. By summing the last line in Table 1.5, one finds that σ2X is equal to 5.83. Hence σX , the standard deviation, is equal to
[image: image6.wmf]
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 , which is 2.41.

Table 1.5
Population variance of X, example with two dice
	X
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	p
	1/36
	2/36
	3/36
	4/36
	5/36
	6/36
	5/36
	4/36
	3/36
	2/36
	1/36

	X – μ
	-5
	-4
	-3
	-2
	-1
	0
	1
	2
	3
	4
	5

	(X - μ)2
	25
	16
	9
	4
	1
	0
	1
	4
	9
	16
	25

	(X - μ)2p
	0,69
	0,89
	0,75
	0,44
	0,14
	0,00
	0,14
	0,44
	0,75
	0,89
	0,69

	σ2X
	E[(X – μ)2] = (x1 - μ)2p1 + … + (xn - μ)2pn = 5,83


The population variance of a random variable can be written

σ2X = E(X2) – μ2 





 (1.8)

an expression that is sometimes more convenient than the original definition. The proof of this formula is a good example of the use of the expected value rules but we will omit it here (see [2]). Thus, if you wish to calculate the population variance of X, you can calculate the expected value of X2 and subtract μ2. 
1.7. Probability Density

Discrete random variables are very easy to handle in that, by definition, they can take only a finite set of values. Each of these values has a "packet" of probability associated with it, and, if you know the size of these packets, you can calculate the population mean and variance with no trouble. This is illustrated in Figure 1.1. 
Packets of probability
[image: image8.emf]
Figure 1.1. Discrete probabilities (example with two dice)
Unfortunately, the analysis in this manual usually deals with continuous random variables, which can take an infinite number of values. We will discuss the example of the temperature. For the sake of argument, we will assume that this varies within the limits of 55 to 75o, and initially we will suppose that it is equally likely to be anywhere within this range.

Since there are an infinite number of different values that the temperature can take, it is useless trying to divide the probability into little packets and we have to adopt a different approach. Instead, we talk about the probability of the random variable lying within a given interval, and we represent the probability graphically as an area within the interval. For example, in the present case, the probability of X lying in the interval 59 to 60 is 0.05 since this range is one twentieth of the complete range 55 to 75. Figure 1.2 shows the rectangle depicting the probability of X lying in this interval. Since its area is 0.05 and its base is one, its height must be 0.05. The same is true for all the other one-degree intervals in the range that X can take.
[image: image9.emf]
Figure 1.2

Having found the height at all points in the range, we can answer such questions as "What is the probability that the temperature lies between 65 and 70o?" The answer is given by the area in the interval 65 to 70, represented by the shaded area in Figure 1.3. The base of the shaded area is 5, and its height is 0.05, so the area is 0.25. The probability is a quarter, which is obvious anyway in that 65 to 70o is a quarter of the whole range.
The height at any point is formally described as the probability density at that point, and, if it can be written as a function of the random variable, it is known as the probability density function. In this case it is given by f(x), where x is the temperature and f(x) = 0.05 for 55 ≤ x ≤ 75; f(x) = 0 for x < 55 or x > 75. 
[image: image10.emf]
Figure 1.3

The foregoing example was particularly simple to handle because the probability density function was constant over the range of possible values of X. Next we will consider an example in which the function is not constant, because not all temperatures are equally likely. We will suppose that the temperature control system has been fixed so that the temperature never falls below 65o, and that sometimes the temperature will exceed this, with a maximum of 75o as before. We will suppose that the probability is greatest at 65o and that it decreases evenly to 0 at 75o, as shown in Figure 1.4.
[image: image11.emf]
Figure 1.4. Probability density function of temperature
The total area within the range, as always, is equal to 1, because the total probability is equal to 1. The area of the triangle is ½ × base × height, so one has ½ × 10 × height = 1 and the height at 65o is equal to 0.20.

Suppose again that we want to know the probability of the temperature lying between 65 and 70o. It is given by the shaded area in Figure 1.4, and with a little geometry you should be able to verify that it is equal to 0.75. If you prefer to talk in terms of percentages, this means that there is a 75 percent chance that the temperature will lie between 65 and 70o. In our case the probability density function is given by f(x), where f(x) = 1.5 – 0.02x for 65 ≤ x ≤ 75; f(x) = 0 for x < 65 or x > 75. If you want to calculate probabilities for more complicated, curved functions, simple geometry will not do. In general you have to use integral calculus or refer to specialized tables. Integral calculus is also used in the definitions of the expected value and variance. These notions have much the same meaning for continuous random variables that they have for discrete ones and the expected value rules work in exactly the same way.
1.8. Expected Value and Variance of a Continuous Random Variable

The definition of the expected value of a continuous random variable is very similar to that for a discrete random variable.
E(x) = ∫xf(x)dx ,





(1.9)
where f(x) is the probability density function of x, with the integration being performed over the interval for which f(x) is defined.

In both cases the different possible values of X are weighted by the probability attached to them. In the case of the discrete random variable, the summation is done on a packet-by-packet basis over all the possible values of X. In the continuous case, it is of course done on a continuous basis, integrating replacing summation, and the probability density function f(x) replacing the packets of probability pi. However, the principle is the same.

In the section on discrete random variables, it was shown how to calculate the expected value of a function of X, g(X). The process is exactly the same for a continuous random variable, except that it is done on a continuous basis, which means summation by integration instead of Σ summation. In the continuous case, it is defined by

E[g(X )] = ∫g(x)f(x)dx ,  




(1.10)
with the integration taken over the whole range for which f(x) is defined.

To calculate the population variance in the case of a continuous random variable you have to evaluate
 σ2X = E[(X – μ)2] = ∫(x − μ)2 f( x)dx .


(1.11 )

As before, when you have evaluated the population variance, you can calculate the population standard deviation, σX, by taking its square root.

1.9. Fixed and Random Components of a Random Variable

Instead of regarding a random variable as a single entity, it is often possible and convenient to break it down into a fixed component and a pure random component, the fixed component always being the population mean. If X is a random variable and μ its population mean, one may make the following decomposition:
X = μ + u, 






(1.12)
where u is what will be called the pure random component (in the context of regression analysis, it is usually described as the disturbance term).

You could of course look at it the other way and say that the random component, u, is defined to be the difference between X and μ:
u = X – μ .






(1.13)
It follows from its definition that the expected value of u is 0. From equation (1.13),
E(ui) = E(xi – μ) = E(xi + (- μ)) = E(xi) + E(– μ) = μ – μ = 0.

(1.14)
Since all the variation in X is due to u, it is not surprising that the population variance of X is equal to the population variance of u. This is easy to prove. By definition,
σ2X = E[(X - μ)2] = E(u2) 




(1.15)

and

σ2u = E[(u - mean of u)2] = E[(u – 0)2] = E(u2).

(1.16)
Hence σ2 can equivalently be defined to be the variance of X or u.

To summarize, if X is a random variable defined by (1.12), where μ is a fixed number and u is a random component, with mean 0 and population variance σ2, then X has population mean μ and population variance σ2.

1.10. Estimators

So far we have assumed that we have exact information about the random variable under discussion, in particular that we know the probability distribution, in the case of a discrete random variable, or the probability density function, in the case of a continuous variable. With this information it is possible to work out the population mean and variance and any other population characteristics in which we might be interested.

Now, in practice, except for artificially simple random variables such as the numbers on thrown dice, you do not know the exact probability distribution or density function. It follows that you do not know the population mean or variance. However, you would like to obtain an estimate of them or some other population characteristic.

The procedure is always the same. You take a sample of n observations and derive an estimate of the population characteristic using some appropriate formula. You should be careful to make the important distinction that the formula is technically known as an estimator; the number that is calculated from the sample using it is known as the estimate. The estimator is a general rule or formula, whereas the estimate is a specific number that will vary from sample to sample.
Table 1.6 gives the usual estimators for the two most important population characteristics. The sample mean, 
[image: image12.wmf]X

, is the usual estimator of the population mean, and the formula for s2 is the usual estimator of the population variance.

Table 1.6
Estimators
	Population characteristic
	Estimator

	Mean, μ
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	Population variance, σ2
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Note that these are the usual estimators of the population mean and variance; they are not the only ones. You are probably so accustomed to using the sample mean as an estimator of μ that you are not aware of any alternatives. Of course, not all the estimators you can think of are equally good. The reason that we do in fact use 
[image: image15.wmf]X

 is that it is the best according to two very important criteria, unbiasedness and efficiency. These criteria will be discussed later.
1.11. Estimators Are Random Variables
An estimator is a special case of a random variable. This is because it is a combination of the values of X in a sample, and, since X is a random variable, a combination of a set of its values must also be a random variable. For instance, take 
[image: image16.wmf]X

 , the estimator of the mean:
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(1.17)
We have just seen that the value of X in observation i may be decomposed into two parts: the fixed part, μ, and the pure random component, ui:

xi = μ + ui. 






(1.18)
Hence


[image: image18.wmf]X

= [(μ + …+ μ)/n] + [(u1 + u2 + … + un)/n] = μ + ū , 

 (1.19)

where ū is the average of ui in the sample.

From this you can see that 
[image: image19.wmf]X

, like X, has both a fixed component and a pure random component. Its fixed component is μ, the population mean of X, and its pure random component is ū, the average of the pure random components in the sample.

The probability density functions of both X and 
[image: image20.wmf]X

 have been drawn in the same diagram in Figure 1.5. 
[image: image21.emf]
Figure 1.5. Comparison of the probability density functions of a single observation and the mean of a sample

By way of illustration, X is assumed to have a normal distribution. You will see that the distributions of both X and 
[image: image22.wmf]X

 are centered over μ, the population mean. The difference between them is that the distribution for 
[image: image23.wmf]X

 is narrower and taller. 
[image: image24.wmf]X

 is likely to be closer to μ than a single observation on X, because its random component ū is an average of the pure random components u1, u2, ..., un in the sample, and these are likely to cancel each other out to some extent when the average is taken. Consequently the population variance of ū is only a fraction of the population variance of u. It will be shown in Section 2.6 that, if the population variance of u is σ2, then the population variance of ū is σ2/n.
s2, the unbiased estimator of the population variance of X, is also a random variable. Subtracting (1.19) from (1.18),
 xi - [image: image25.wmf]X

 = ui – ū .




 (1.20)
Hence
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(1.21)
Thus s2 depends on (and only on) the pure random components of the observations on X in the sample. Since these change from sample to sample, the value of the estimator s2 will change from sample to sample.

1.12. Unbiasedness

Since estimators are random variables, it follows that only by coincidence will an estimate be exactly equal to the population characteristic. Generally there will be some degree of error, which will be small or large, positive or negative, according to the pure random components of the values of X in the sample.

We should like the expected value of the estimator to be equal to the population characteristic. If this is true, the estimator is said to be unbiased. If it is not, the estimator is said to be biased, and the difference between its expected value and the population characteristic is described as the bias.

Let us start with the sample mean. Is this an unbiased estimator of the population mean? Is E([image: image28.wmf]X

) equal to μ? Yes, it is, and it follows immediately from (1.19). [image: image29.wmf]X

 has two components, μ and ū. ū is the average of the pure random components of the values of X in the sample, and since the expected value of the pure random component in any observation is 0, the expected value of ū is 0. Hence
E([image: image30.wmf]X

) = E(μ + ū) = E(μ) + E(ū) = μ + 0 = μ .



(1.22)
However, this is not the only unbiased estimator of μ that we could construct. To keep the analysis simple, suppose that we have a sample of just two observations, x1 and x2. Instead of the sample mean, we can construct a generalized estimator 

Z = λ1x1 + λ2x2 , 




(1.23)

where λ1 and λ2 are the weight coefficients. It is possible to show that any such estimator will be an unbiased estimator when λ1 + λ2 = 1 (see the proof in [2]). Thus, in principle, we have an infinite number of unbiased estimators. How do we choose among them? Why do we always in fact use the usual sample average with the equal weights? We will find in the next section that there is a compelling reason.

So far we have been discussing only estimators of the population mean. It was asserted that s2, as defined in Table 1.6, is an estimator of the population variance, σ2. One may show that 
E(s2) = σ2 , 




(1.24)

the expected value of s2 is σ2, and hence that it is an unbiased estimator of the population variance, provided that the observations in the sample are generated independently of each another (see the proof in [2]). 
1.13. Efficiency

Unbiasedness is one desirable feature of an estimator, but it is not the only one. Another important consideration is its reliability. We want the estimator to have as high a probability as possible of giving a close estimate of the population characteristic, which means that we want its probability density function to be as concentrated as possible around the true value. In other words, we want its population variance to be as small as possible.

probability density function
[image: image31.emf]
Figure 1.6. Efficient and inefficient estimators

Suppose that we have two estimators of the population mean, that they are calculated using the same information, that they are both unbiased, and that their probability density functions are as shown in Figure 1.6. Since the probability density function for estimator B is more highly concentrated than that for estimator A, it is more likely to give an accurate estimate. It is therefore said to be more efficient, to use the technical term.

Note carefully that the definition says "more likely". Even though estimator B is more efficient, that does not mean that it will always give the more accurate estimate. Some times it will have a bad day, and estimator A will have a good day, and A will be closer to the truth. But the probability of A being more accurate than B will be less than 50 percent.

We have said that we want the variance of an estimator to be as small as possible, and that the efficient estimator is the one with the smallest variance. It is possible to show that the variance of the generalized estimator Z of the population mean,
σ2z = pop.var (λ1x1 + λ2x2) = (λ21 + λ22)σ2 , 


  (1.25)
is minimized when x1, x2 are independent observations and λ1 = λ2 = 0.5. The proof is omitted here but you can find it in [2]. 

We have thus seen that the sample average has the smallest variance of estimators of this kind. This means that it is the most efficient. Of course we have shown this only for the case where the sample consists of just two observations, but the conclusions are valid for samples of any size, provided that the observations are independent of one another.

Two final points. First, efficiency is a comparative concept. You should use the term only when comparing alternative estimators. You should not use it to summarize changes in the variance of a single estimator. In particular, as we shall see in the next section, the variance of an estimator generally decreases as the sample size increases, but it would be wrong to say that the estimator is becoming more efficient. Second, you can compare the efficiency of alternative estimators only if they are using the same information, for example, the same set of observations on a number of random variables. If the estimators use different information, one may well have a smaller variance, but it would not be correct to describe it as being more efficient.

1.14. Conflicts between Unbiasedness and Minimum Variance

We have seen that it is desirable that an estimator be unbiased and that it have the smallest possible variance. These are two quite different criteria and occasionally they conflict with each other. It sometimes happens that one can construct two estimators of a population characteristic, one of which is unbiased (A in Figure 1.7), the other being biased but having smaller variance (B).
[image: image32.emf]
Figure 1.7. Which estimator is to be preferred? A is unbiased but B has smaller variance

A will be better in the sense that it is unbiased, but B is better in the sense that its estimates are always close to the true value. How do you choose between them?

It will depend on the circumstances. If you are not bothered by errors, provided that in the long run they cancel out, you should probably choose A. On the other hand, if you can tolerate small errors, but not large ones, you should choose B.

Technically speaking, it depends on your loss function, the cost to you of an error as a function of its size. It is usual to choose the estimator that yields the smallest expected loss, which is found by weighting the loss function by the probability density function. 

A common example of a loss function is the square of the error. The expected value of this, known as the mean square error (MSE), has the simple decomposition:

MSE of estimator = Variance of estimator + Bias2  

(1.26)
or
MSE(Z) = E[(Z – μx)2] = E[(Z – μz)2] + (μz – μx)2 .  
(1.27)
The proof is omitted here but you can find it in [2]. 
In Figure 1.7, estimator A has no bias component, but it has a much larger variance component than B and therefore could be inferior by this criterion.

The MSE is often used to generalize the concept of efficiency to cover comparisons of biased as well as unbiased estimators. However, in this text, comparisons of efficiency will mostly be confined to unbiased estimators.
1.15. The Effect of Increasing the Sample Size on the Accuracy of an Estimate

We shall continue to assume that we are investigating a random variable X with unknown mean μ and population variance σ2, and that we are using [image: image33.wmf]X

 to estimate μ. How does the accuracy of [image: image34.wmf]X

 depend on the number of observations, n?

Not surprisingly, the answer is that, as you increase n, the more accurate [image: image35.wmf]X

 is likely to be. Since the population variance of [image: image36.wmf]X

 is given by σ2/n, the bigger the sample, the smaller the variance and hence the more tightly compressed is the probability density function of [image: image37.wmf]X

 . This is illustrated in Figure 1.8.
probability density function
[image: image38.emf]
Figure 1.8. Effect of increasing the sample size on the distribution of [image: image39.wmf]X


The larger the sample size, the narrower and taller will be the probability density function of [image: image40.wmf]X

. In the limit, as n tends to infinity, σ2/n tends to 0 and [image: image41.wmf]X

 tends to μ exactly. This may be written mathematically
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(1.28)
An equivalent and more common way of expressing it is to use the term plim, where plim means "probability limit" and emphasizes that the limit is being reached in a probabilistic sense:

plim [image: image43.wmf]X

 = μ ,





(1.29)
when, for any arbitrarily small numbers ε and δ, the probability of [image: image44.wmf]X

 being more than ε different from μ is less than δ, provided that the sample is large enough.
1.16. Consistency

In general, if the plim of an estimator is equal to the true value of the population characteristic, it is said to be consistent. To put it another way, a consistent estimator is one that is bound to give an accurate estimate of the population characteristic if the sample is large enough, regardless of the actual observations in the sample. In most of the contexts considered in this text, an unbiased estimator will also be a consistent one.

It sometimes happens that an estimator that is biased for small samples may be consistent (it is even possible for an estimator that does not have a finite expected value for small samples to be consistent). Figure 1.9 illustrates how the probability distribution might look for different sample sizes. 
[image: image45.emf]
Figure 1.9. Estimator that is consistent despite being biased in finite samples

The distribution is said to be asymptotically (meaning, in large samples) unbiased because it becomes centered on the true value as the sample size becomes large. It is said to be consistent because it finally collapses to a single point, the true value.

An estimator is described as inconsistent either if its distribution fails to collapse as the sample size becomes large or if the distribution collapses at a point other than the true value. 
Estimators of the type shown in Figure 1.9 are quite important in regression analysis. Sometimes it is impossible to find an estimator that is unbiased for small samples. If you can find one that is at least consistent, that may be better than having no estimate at all, especially if you are able to assess the direction of the bias in small samples. However, it should be borne in mind that a consistent estimator could in principle perform worse (for example, have a larger mean square error) than an inconsistent one in small samples, so you must be on your guard. In the same way that you might prefer a biased estimator to an unbiased one if its variance is smaller, you might prefer a consistent, but biased, estimator to an unbiased one if its variance is smaller, and an inconsistent one to either if its variance is smaller still.

2. COVARIANCE, VARIANCE, AND CORRELATION

2.1. Sample Covariance

Sample covariance is a measure of association between two variables. The sample covariance, Cov(X,Y), is a statistic that enables you to summarize this association with a single number. In general, given n observations on two variables X and Y, the sample covariance between X and Y is given by
Cov(X,Y) = [(X1 - [image: image46.wmf]X

)(Y1 - Ῡ) + …+ (Xn - [image: image47.wmf]X
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where, as usual, a bar over the symbol for a variable denotes its sample mean. A positive association will be summarized by a positive sample covariance, and a negative association by a negative one.
An alternative, and equivalent, expression is
Cov(X,Y) = 
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  (2.2)
You may find this to be more convenient if you are unfortunate enough to have to calculate a covariance by hand. In practice you will normally perform calculations of this kind using a statistical package on a computer.

It is easy to prove that the two expressions are equivalent. It is possible to see the proof in [2].
2.2. Some Basic Covariance Rules

There are some rules that follow in a perfectly straightforward way from the definition of covariance, and since they are going to be used many times in future chapters it is worthwhile establishing them immediately.

Covariance Rule 1. If Y = V + W, Cov(X,Y) = Cov(X,V) + Cov(X,W).

         (2.3)

Covariance Rule 2. If Y = bZ, where b is a constant and Z is a variable,

Cov(X,Y) = bCov(X,Z).





       (2.4)
Covariance Rule 3. If Y = b, where b is a constant, Cov(X,Y) = 0. 

         (2.5)
It is easy to prove these rules. It is possible to see the proof in [2].
With these basic rules, you can simplify much more complicated covariance expressions. For example, if a variable Y is equal to the sum of three variables U, V, and W,

Cov(X,Y) = Cov(X,[U + V + W]) = Cov(X,U) + Cov(X,[V + W]) 
(2.6)

using Rule 1 and breaking up Y into two parts, U and V+W. Hence
Cov(X,Y) = Cov(X,U ) + Cov(X,V ) + Cov(X,W) 


(2.7)
using Rule 1 again.

2.3. Population Covariance

If X and Y are random variables, the expected value of the product of their deviations from their means is defined to be the population covariance, σXY:

σXY = E[(X – μX)(Y – μY)] ,



 (2.8)

where μX and μY are the population means of X and Y, respectively.

As you would expect, if the population covariance is unknown, the sample covariance will provide an estimate of it, given a sample of observations. However, the estimate will be biased downwards, for
E[Cov(X,Y)] = σXY(n −1)/n.



(2.9)
The reason is that the sample deviations are measured from the sample means of X and Y and tend to underestimate the deviations from the true means. Obviously we can construct an unbiased estimator by multiplying the sample estimate by n/(n–1). A proof of (2.9) will not be given here, but you could construct one yourself using [2].
The rules for population covariance are exactly the same as those for sample covariance, but the proofs will be omitted. 
If X and Y are independent, their population covariance is 0, since then
E[(X – μX)(Y – μY)] = E(X – μX)E(Y – μY) = 0 × 0 

(2.10)

by virtue of the independence property noted in the paragraph 1.5 and the fact that E(X) and E(Y) are equal to μX and μY, respectively.
2.4. Sample Variance

In the Section 1 the term variance was used to refer to the population variance. For purposes that will become apparent in the discussion of regression analysis, it will be useful to introduce, with three warnings, the notion of sample variance. For a sample of n observations, X1, ... Xn, the sample variance will be defined as the average squared deviation in the sample:

Var(X) = 
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The three warnings are:

1. The sample variance, thus defined, is a biased estimator of the population variance. Paragraph 1.12 demonstrates that s2 is an unbiased estimator of σ2. It follows that the expected value of Var(X) is [(n–1)/n]σ2 and that it is therefore biased downwards. Note that as n becomes large, (n–1)/n tends to 1, so the bias becomes 0. It can easily be shown that plim Var(X) is equal to σ2 and hence that it is an example of a consistent estimator that is biased for small samples. Why does the sample variance underestimate the population variance? The reason is that it is calculated as the average squared deviation from the sample mean rather than the true mean. Because the sample mean is automatically in the center of the sample, the deviations from it tend to be smaller than those from the population mean.
2. Because s2 is unbiased, some texts prefer to define it as the sample variance and either avoid referring to Var(X) at all or find some other name for it. Unfortunately, there is no generally agreed convention on this point. In each text, you must check the definition.

3. Because there is no agreed convention, there is no agreed notation, and a great many symbols have been pressed into service. In this text the population variance of a variable X is denoted σ2X . If there is no ambiguity concerning the variable in question, the subscript may be dropped. The sample variance will always be denoted Var(X).

2.5. Variance Rules

There are some useful rules for variances, which are counterparts of those for covariance discussed in Section 2.2. They apply equally to sample variance and population variance:
Variance Rule 1. If Y = V + W, Var(Y) = Var(V) + Var(W) + 2Cov(V, W).
Variance Rule 2. If Y = bZ, where b is a constant, Var(Y) = b2Var(Z).
Variance Rule 3. If Y = b, where b is a constant, Var(Y) = 0.
Variance Rule 4. If Y = V + b, where b is a constant, Var(Y) = Var(V).
The proofs of the rules are omitted here. You can find the proofs and the alternative forms for Var(X) in [2]. 
2.6. Population Variance of the Sample Mean

If two variables X and Y are independent (and hence their population covariance σXY = 0), the population variance of their sum is equal to the sum of their population variances:

pop.var(X+Y) = pop.var(X) + pop.var(Y) + 2σXY = σ2X + σ2Y . 
(2.12)
This result can be extended to obtain the general rule that the population variance of the sum of any number of mutually independent variables is equal to the sum of their variances, and one is able to show that, if a random variable X has variance σ2, the population variance of the sample mean, [image: image51.wmf]X

, will be equal to σ2/n, where n is the number of observations in the sample, provided that the observations are generated independently: 
pop.var([image: image52.wmf]X

) = pop.var[(X1 +…+ Xn)/n] = [pop.var(X1 +…+ Xn)]/n2 = 
= [pop.var(X1) +…+ pop.var(Xn)]/n2 = (σ2 +…+ σ2)/n2 = σ2/n.     (2.13)
As we have seen in the Section 1, the sample mean is the most efficient unbiased estimator of the population mean provided that the observations are independently drawn from the same distribution.
2.7. The Correlation Coefficient

In this chapter a lot of attention has been given to covariance. This is because it is very convenient mathematically, not because it is a particularly good measure of association. A much more satisfactory measure is the correlation coefficient.
Like variance and covariance, the correlation coefficient comes in two forms, population and sample. The population correlation coefficient is traditionally denoted ρ. For variables X and Y it is defined by

ρXY = 
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If X and Y are independent, ρXY will be equal to 0 because the population covariance σXY will be 0. If there is a positive association between them, σXY, and hence ρXY, will be positive. If there is an exact positive linear relationship, ρXY will assume its maximum value of 1. Similarly, if there is a negative relationship, ρXY will be negative, with minimum value of –1.

The sample correlation coefficient, rXY, is defined by replacing the population covariance and variances in (2.14) by their unbiased estimators. We have seen that these may be obtained by multiplying the sample variances and covariances by n / ( n – 1 ). Hence

rXY = 
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(2.15)
The factors n/(n–1) cancel, so we can conveniently define the sample correlation by (2.15).
Like ρ, r has maximum value 1, which is attained when there is a perfect positive association between the sample values of X and Y. Similarly, it has minimum value –1, attained when there is a perfect negative association. A value of 0 indicates that there is no association between the observations on X and Y in the sample. Of course the fact that r = 0 does not necessarily imply that ρ = 0 or vice versa.

The correlation coefficient is a much better measure of association than the covariance, the main reason being that the covariance depends on the units in which the variables X and Y happen to be measured, whereas the correlation coefficient does not.
3. SIMPLE REGRESSION ANALYSIS

3.1. The Simple Linear Model

The correlation coefficient may indicate that two variables are associated with one another, but it does not give any idea of the kind of relationship involved. We will now study those cases for which we hypothesize than one variable depends on another.

It must be stated immediately that one would not expect to find an exact relationship between any two economic variables, unless it is true as a matter of definition. In statistical analysis one generally acknowledges the fact that the relationship is not exact by explicitly including in it a random factor known as the disturbance term.

We shall start with the simplest possible model:

Yi = β1 + β2Xi + ui. 





(3.1)
Yi, the value of the dependent variable in observation i, has two components: (1) the nonrandom component β1 + β2Xi, X being described as the explanatory (or independent) variable, and the fixed quantities β1 and β2 as the parameters of the equation, and (2) the disturbance term, ui.

Figure 3.1 illustrates how these two components combine to determine Y.
[image: image56.emf]
Figure 3.1. True relationship between Y and X
X1, X2, X3, and X4 are four hypothetical values of the explanatory variable. If the relationship between Y and X were exact, the corresponding values of Y would be represented by the points Q1 – Q4 on the line. The disturbance term causes the actual values of Y to be different. In the diagram, the disturbance term has been assumed to be positive in the first and fourth observations and negative in the other two, with the result that, if one plots the actual values of Y against the values of X, one obtains the points P1 – P4.

It must be emphasized that in practice the P points are all one can see of Figure 3.1. The actual values of β1 and β2, and hence the location of the Q points, are unknown, as are the values of the disturbance term in the observations. The task of regression analysis is to obtain estimates of β1 and β2, and hence an estimate of the location of the line, given the P points.

Why does the disturbance term exist? There are several reasons.

1. Omission of explanatory variables: The relationship between Y and X is almost certain to be a simplification. In reality there will be other factors affecting Y that have been left out of (3.1), and their influence will cause the points to lie off the line. It often happens that there are variables that you would like to include in the regression equation but cannot because you are unable to measure them. All these other factors contribute to the disturbance term.

2. Aggregation of variables: In many cases the relationship is an attempt to summarize in aggregate a number of microeconomic relationships. For example, the aggregate consumption function is an attempt to summarize a set of individual expenditure decisions. Since the individual relationships are likely to have different parameters, any attempt to relate aggregate expenditure to aggregate income can only be an approximation. The discrepancy is attributed to the disturbance term.

3. Model misspecification: The model may be misspecified in terms of its structure. Just to give one of the many possible examples, if the relationship refers to time series data, the value of Y may depend not on the actual value of X but on the value that had been anticipated in the previous period. If the anticipated and actual values are closely related, there will appear to be a relationship between Y and X, but it will only be an approximation, and again the disturbance term will pick up the discrepancy.

4. Functional misspecification: The functional relationship between Y and X may be misspecified mathematically. For example, the true relationship may be nonlinear instead of linear, and the discrepancy contributes to the disturbance term.

5. Measurement error: If the measurement of one or more of the variables in the relationship is subject to error, the observed values will not appear to conform to an exact relationship, and the discrepancy contributes to the disturbance term.

The disturbance term is the collective outcome of all these factors.
3.2. Least Squares Regression

Suppose that you are given the four observations on X and Y represented in Figure 3.1 and you are asked to obtain estimates of the values of β1 and β2 in equation (3.1). As a rough approximation, you could do this by plotting the four P points and drawing a line to fit them as best you can. This has been done in Figure 3.2. The intersection of the line with the Y-axis provides an estimate of the intercept β1, which will be denoted b1, and the slope provides an estimate of the slope coefficient β2, which will be denoted b2. 
[image: image57.emf]
Figure 3.2
The fitted line will be written
Ŷi = b1 + b2 Xi .




(3.2)
The caret mark over Y indicates that it is the fitted value of Y corresponding to X, not the actual value. In Figure 3.2, the fitted points are represented by the points R1 – R4.

One thing that should be accepted from the beginning is that you can never discover the true values of β1 and β2, however much care you take in drawing the line. b1 and b2 are only estimates, and they may be good or bad. This remains the case even when you use more sophisticated techniques. Drawing a regression line by eye is all very well, but it leaves a lot to subjective judgment. The question arises, is there a way of calculating good estimates of β1 and β2 algebraically?

The first step is to define what is known as a residual for each observation. This is the difference between the actual value of Y in any observation and the fitted value given by the regression line, that is, the vertical distance between Pi and Ri in observation i. It will be denoted ei:

ei = Yi – Ŷi .





(3.3)
The residuals for the four observations are shown in Figure 3.2. Substituting (3.2) into (3.3), we obtain

ei = Yi – b1 – b2Xi 




(3.4)

and hence the residual in each observation depends on our choice of b1 and b2. Obviously, we wish to fit the regression line, that is, choose b1 and b2, in such a way as to make the residuals as small as possible. Equally obviously, a line that fits some observations well will fit others badly and vice versa. We need to devise a criterion of fit that takes account of the size of all the residuals simultaneously.

One way of overcoming the problem is to minimize RSS, the sum of the squares of the residuals. For Figure 3.2,

RSS = e12 + e22 + e32 + e42 .



(3.5)

The smaller one can make RSS, the better is the fit, according to this criterion. There are other quite reasonable solutions, but the least squares criterion yields estimates of b1 and b2 that are unbiased and the most efficient of their type, provided that certain conditions are satisfied. For this reason, the least squares technique is far and away the most popular in uncomplicated applications of regression analysis. The form used here is usually referred to as ordinary least squares and abbreviated OLS.
3.3. Least Squares Regression with One Explanatory Variable

We shall now consider the general case where there are n observations on two variables X and Y and, supposing Y to depend on X, we will fit the equation (3.2). 
We wish to choose b1 and b2 so as to minimize the residual sum of the squares, RSS, given by
RSS = e12 +…+ en2 = 
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(3.6)

We will find that RSS is minimized when

b2 = 
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(3.7)
and
b1 = Ῡ - b2[image: image60.wmf]X

. 





(3.8)
The derivation of the expressions for b1 and b2 will be omitted here. You can find it (and the alternative expressions for b2) in [2].
3.4. Interpretation of a Regression Equation

This is a foolproof way of interpreting the coefficients of a linear regression (3.2) when Y and X are variables with straightforward natural units (not logarithms or other functions).

The first step is to say that a one-unit increase in X (measured in units of X) will cause a b2 unit increase in Y (measured in units of Y). The second step is to check to see what the units of X and Y actually are, and to replace the word "unit" with the actual unit of measurement. The third step is to see whether the result could be expressed in a better way, without altering its substance.

The constant, b1, gives the predicted value of Y (in units of Y) for X equal to 0. It may or may not have a plausible meaning, depending on the context.

It is important to keep three things in mind when interpreting a regression equation. First, b1 is only an estimate of β1 and b2 is only an estimate of β2, so the interpretation is really only an estimate. Second, the regression equation refers only to the general tendency for the sample. Any individual case will be further affected by the random factor. Third, the interpretation is conditional on the equation being correctly specified.

Having fitted a regression, it is natural to ask whether we have any means of telling how accurate are our estimates. This very important issue will be discussed in the next chapter.
3.5. Goodness of Fit

The aim of regression analysis is to explain the behavior of the dependent variable Y. In any given sample, Y is relatively low in some observations and relatively high in others. We want to know why. The variations in Y in any sample can be summarized by the sample variance, var(Y). We should like to be able to account for the size of this variance.

We have seen that we can split the value of Yi in each observation into two components, Ŷi and ei, after running a regression:
Yi = Ŷi + ei.





(3.9)

We can use this to decompose the variance of Y:

var(Y) = var(Ŷ + e) = var(Ŷ) + var(e) + 2cov(Ŷ,e). 

(3.10)
Now it so happens the cov(Ŷ,e) must be equal to 0 (see the proof in [2]). Hence we obtain
var(Y) = var(Ŷ) + var(e). 



(3.11)
This means that we can decompose the variance of Y into two parts, var(Ŷ), the part "explained" by the regression line, and var(e), the "unexplained" part. The words explained and unexplained have been put in quotation marks because the explanation may in fact be false. Y might really depend on some other variable Z, and X might be acting as a proxy for Z. It would be safer to use the expression apparently explained instead of explained.
In view of (3.11), var(Ŷ)/var(Y) is the proportion of the variance explained by the regression line. This proportion is known as the coefficient of determination or, more usually, R2:

R2 = [var(Ŷ)]/[var(Y)]. 



(3.12)
The maximum value of R2 is 1. This occurs when the regression line fits the observations exactly, so that Ŷi = Yi in all observations and all the residuals are 0. Then var(Ŷ) = var(Y), var(e) is 0, and one has a perfect fit. If there is no apparent relationship between the values of Y and X in the sample, R2 will be close to 0.

Often it is convenient to decompose the variance as "sums of squares". From (3.11) one has
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and so
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(3.14)
multiplying through by n and using ē = 0 and 
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TSS = ESS +RSS, 




(3.15)
where TSS, the total sum of squares, is given by the left side of the equation and ESS, the explained sum of squares, and RSS, the residual sum of squares, are the two terms on the right side.

Other things being equal, one would like R2 to be as high as possible. In particular, we would like the coefficients b1 and b2 to be chosen in such a way as to maximize R2. Does this conflict with our criterion that b1 and b2 should be chosen to minimize the sum of the squares of the residuals? No, they are easily shown to be equivalent criteria. In view of (3.11) we can rewrite R2 as
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(3.16)
and so the values of b1 and b2 that minimize the residual sum of squares automatically maximize R2.

It should be intuitively obvious that, the better is the fit achieved by the regression equation, the higher should be the correlation coefficient for the actual and predicted values of Y. One can show (see [2]) that R2 is in fact equal to the square of this correlation coefficient, which we will denote rY,Ŷ :
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4. PROPERTIES OF THE REGRESSION COEFFICIENTS AND HYPOTHESIS TESTING

4.1. The Random Components of the Regression Coefficients

A least squares regression coefficient is a special form of random variable whose properties depend on those of the disturbance term in the equation. Throughout the discussion we shall continue to work with the simple regression model where Y depends on X according to the relationship

Yi = β1 + β2Xi + ui 





(4.1)
and we are fitting the regression equation

Ŷi = b1 + b2 Xi 





(4.2)
given a sample of n observations. We shall also continue to assume that X is a nonstochastic exogenous variable; that is, that its value in each observation may be considered to be predetermined by factors unconnected with the present relationship.

First, note that Yi has two components. It has a nonrandom component (β1+β2Xi), which owes nothing to the laws of chance (β1 and β2 may be unknown, but nevertheless they are fixed constants), and it has the random component ui.

This implies that, when we calculate b2 according to the usual formula

b2 = 
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b2 also has a random component. Cov(X, Y) depends on the values of Y, and the values of Y depend on the values of u. If the values of the disturbance term had been different in the n observations, we would have obtained different values of Y, hence of cov(X, Y), and hence of b2.

We can in theory decompose b2 into its nonrandom and random components. In view of (4.1),

cov(X,Y) = cov(X,[β1 + β2X + u]) = cov(X, β1) + cov(X, β2X) + cov(X,u)
(4.4)
using Covariance Rule 1 in Section 2.2. By Covariance Rule 3, cov(X,β1) must be equal to 0. By Covariance Rule 2, cov(X,β2X) is equal to β2cov(X, X). Cov(X, X) is the same as var(X). Hence we can write

cov(X,Y) = β2var(X) + cov(X,u) 



(4.5)
and so

b2 = 
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(4.6)

Thus we have shown that the regression coefficient b2 obtained from any sample consists of (1) a fixed component, equal to the true value, β2, and (2) a random component dependent on cov(X, u), which is responsible for its variations around this central tendency. Similarly, one may easily show that b1 has a fixed component equal to the true value, β1, plus a random component that depends on the random factor u.

Note that you are not able to make these decompositions in practice because you do not know the true values of β1 and β2 or the actual values of u in the sample. We are interested in them because they enable us to say something about the theoretical properties of b1 and b2, given certain assumptions.

4.2. A Monte Carlo Experiment

Nobody seems to know for certain how the Monte Carlo experiment got its name. Probably it has something to do with the famous casino, as a symbol of the laws of chance.

The problem is that we never know the true values of β1 and β2 (otherwise, why should we use regression analysis to estimate them?), so we have no means of telling whether the technique is giving us good or bad estimates. A Monte Carlo experiment is an artificial, controlled experiment that allows us to check.

The simplest possible Monte Carlo experiment has three parts. 
First,

1. you choose the true values of β1 and β2,

2. you choose the value of X in each observation, and

3. you use some random number generating process to provide the random factor u in each observation.

Second, you generate the value of Y in each observation, using the relationship (4.1) and the values of β1, β2, X and u. 
Third, using only the values of Y thus generated and the data for X, you use regression analysis to obtain estimates b1 and b2. You can then see if b1 is a good estimator of β1 and if b2 is a good estimator of β2, and this will give you some idea of whether the regression technique is working properly.

4.3. Assumptions Concerning the Disturbance Term

It is thus obvious that the properties of the regression coefficients depend critically on the properties of the disturbance term. Indeed the latter has to satisfy four conditions, known as the Gauss–Markov conditions, if ordinary least squares regression analysis is to give the best possible results. If they are not satisfied, the user should be aware of the fact. If remedial action is possible, he or she should be capable of taking it. If it is not possible, he or she should be able to judge how seriously the results may have been affected. 

Gauss–Markov Condition 1: E(ui) = 0 for All Observations

The first condition is that the expected value of the disturbance term in any observation should be 0. Sometimes it will be positive, sometimes negative, but it should not have a systematic tendency in either direction. Actually, if an intercept is included in the regression equation, it is usually reasonable to assume that this condition is satisfied automatically since the role of the intercept is to pick up any systematic but constant tendency in Y not accounted for by the explanatory variables included in the regression equation.

Gauss–Markov Condition 2: pop.var(ui) is Constant for All Observations

The second condition is that the population variance of the disturbance term should be constant for all observations. Sometimes the disturbance term will be greater, sometimes smaller, but there should not be any a priori reason for it to be more erratic in some observations than in others. The constant is usually denoted σu2, often abbreviated to σ2, and the condition is written
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(4.7)
Since E(ui) is 0, the population variance of ui is equal to E(ui2), so the condition can also be written

E(ui2) = σu2  for all i  




(4.8)
σu, of course, is unknown. One of the tasks of regression analysis is to estimate the standard deviation of the disturbance term.

If this condition is not satisfied, the OLS regression coefficients will be inefficient, and one should be able to obtain more reliable results by using a modification of the regression technique. 
Gauss–Markov Condition 3: ui Distributed Independently of uj (i ≠ j)

This condition states that there should be no systematic association between the values of the disturbance term in any two observations. For example, just because the disturbance term is large and positive in one observation, there should be no tendency for it to be large and positive in the next. The values of the disturbance term should be absolutely independent of one another. 

The condition implies that 
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, the population covariance between ui and uj , is 0, because
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= E[(ui – μu)(uj – μu)] = E(uiuj) = E(ui)E(uj) = 0. 

(4.9)
Note that the population means of ui and uj are 0, by virtue of the first Gauss–Markov condition, and that E(uiuj) can be decomposed as E(ui)E(uj) if ui and uj are generated independently – see the chapter 1. If this condition is not satisfied, OLS will again give inefficient estimates. 

Gauss–Markov Condition 4: u Distributed Independently of the Explanatory Variables

The final condition comes in two versions, weak and strong. The strong version is that the explanatory variables should be nonstochastic, that is, not have random components. This is actually very unrealistic for economic variables and we will eventually switch to the weak version of the condition, where the explanatory variables are allowed to have random components provided that they are distributed independently of the disturbance term. However, for the time being we will use the strong version because it simplifies the analysis of the properties of the estimators.

If this condition is satisfied, it follows that 
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, the population covariance between the explanatory variable and the disturbance term is 0. Since E(ui) is 0, and the term involving X is nonstochastic,
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(4.10)
The Normality Assumption. In addition to the Gauss–Markov conditions, one usually assumes that the disturbance term is normally distributed. The reason is that if u is normally distributed, so will be the regression coefficients, and this will be useful to us later in the chapter when we come to the business of performing tests of hypotheses and constructing confidence intervals for β1 and β2 using the regression results.

The justification for the assumption depends on the Central Limit Theorem. In essence, this states that, if a random variable is the composite result of the effects of a large number of other random variables, it will have an approximately normal distribution even if its components do not, provided that none of them is dominant. The disturbance term u is composed of a number of factors not appearing explicitly in the regression equation so, even if we know nothing about the distribution of these factors (or even their identity), we are entitled to assume that they are normally distributed.

4.4. Unbiasedness of the Regression Coefficients

From (4.6) one can show that b2 must be an unbiased estimator of β2 if the first Gauss–Markov condition and the fourth Gauss–Markov condition are satisfied:

E(b2) = β2 . 





(4.11)
In other words, b2 is an unbiased estimator of β2. For the proof see [2].
Unless the random factor in the n observations happens to cancel out exactly, which can happen only by coincidence, b2 will be different from β2 for any given sample, but in view of (4.11) there will be no systematic tendency for it to be either higher or lower. The same is true for the regression coefficient b1:
E(b1) = β1 . 





(4.12)
Thus b1 is an unbiased estimator of β1 provided that the Gauss–Markov conditions 1 and 4 are satisfied. See [2] for the proof. Of course in any given sample the random factor will cause b1 to differ from β1.
4.5. Precision of the Regression Coefficients

Now we shall consider 
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, the population variances of b1 and b2 about their population means. These are given by the following expressions (proofs can be found in [2]):
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(4.13)
and
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(4.14)
Equations (4.13) and (4.14) have three obvious implications. First, the variances of both b1 and b2 are directly inversely proportional to the number of observations in the sample. This makes good sense. The more information you have, the more accurate your estimates are likely to be.

Second, the variances are proportional to the variance of the disturbance term. The bigger the variance of the random factor in the relationship, the worse the estimates of the parameters are likely to be, other things being equal.

Third, the variance of the regression coefficients is inversely related to the variance of X. What is the reason for this? Remember that (1) the regression coefficients are calculated on the assumption that the observed variations in Y are due to variations in X, but (2) they are in reality partly due to variations in X and partly to variations in u. The smaller the variance of X, the greater is likely to be the relative influence of the random factor in determining the variations in Y and the more likely is regression analysis give inaccurate estimates.

In practice, one cannot calculate the population variances of either b1 or b2 because σu2 is unknown. However, we can derive an estimator of σu2 from the residuals. Clearly the scatter of the residuals around the regression line will reflect the unseen scatter of u about the line Yi = β1 + β2Xi, although in general the residual and the value of the disturbance term in any given observation are not equal to one another. Hence the sample variance of the residuals, var(e), which we can measure, will be a guide to σu2 , which we cannot. It can be shown that the expected value of var(e), when there is just one explanatory variable, is [(n – 2)/n]σu2. However, it follows that, if one defines su2 by
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(4.15)
su2 will be an unbiased estimator of σu2 (for a proof, see [2]).

Using (4.13), (4.14) and (4.15), one can obtain estimates of the population variances of b1 and b2 and, by taking square roots, estimates of their standard deviations. Rather than talk about the “estimate of the standard deviation of the probability density function” of a regression coefficient, which is a bit cumbersome, one uses the term “standard error” of a regression coefficient, which in this text will frequently be abbreviated to s.e. For simple regression analysis, therefore, one has
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(4.16)
One fundamental point must be emphasized. The standard error gives only a general guide to the likely accuracy of a regression coefficient. It enables you to obtain some idea of the width, or narrowness, of its probability density function, but it does not tell you whether your regression estimate comes from the middle of the function, and is therefore accurate, or from the tails, and is therefore relatively inaccurate.

The higher the variance of the disturbance term, the higher the sample variance of the residuals is likely to be, and hence the higher will be the standard errors of the coefficients in the regression equation, reflecting the risk that the coefficients are inaccurate. However, it is only a risk. It is possible that in any particular sample the effects of the disturbance term in the different observations will cancel each other out and the regression coefficients will be accurate after all. The trouble is that in general there is no way of telling whether you happen to be in this fortunate position or not.

4.6. The Gauss–Markov Theorem

One can show that the OLS estimators are not the only unbiased estimators of the regression coefficients, but, provided that the Gauss–Markov conditions are satisfied, they are the most efficient. The other side of the coin is that, if the Gauss–Markov conditions are not satisfied, it will in general be possible to find estimators that are more efficient than OLS.

We will not attempt a general discussion of these issues here. Nevertheless, provided that the Gauss–Markov conditions for the disturbance term are satisfied, the OLS regression coefficients will be best linear unbiased estimators (BLUE): unbiased, as has already been demonstrated; linear, because they are linear functions of the values of Y; and best because they are the most efficient of the class of unbiased linear estimators. This is proved by the Gauss–Markov theorem.

4.7. Testing Hypotheses Relating to the Regression Coefficients

Which comes first, theoretical hypothesizing or empirical research? In practice, theorizing and experimentation feed on each other, and questions of this type cannot be answered. For this reason, we will approach the topic of hypothesis testing from both directions. On the one hand, we may suppose that the theory has come first and that the purpose of the experiment is to evaluate its plausibility. This will lead to the execution of significance tests. Alternatively, we may perform the experiment first and then consider what theoretical hypotheses would be consistent with the results. This will lead to the construction of confidence intervals.

Formulation of a Null Hypothesis. We will start by assuming that the theory precedes the experiment and that you have some hypothetical relationship in your mind. For example, you may believe that the percentage rate of price inflation in an economy, p, depends on the percentage rate of wage inflation, w, according to the linear equation

p = β1 + β2w + u 





(4.17)

where β1 and β2 are parameters and u is a disturbance term. You might further hypothesize that, apart from the effects of the disturbance term, price inflation is equal to wage inflation. Under these circumstances you would say that the hypothesis that you are going to test, known as your null hypothesis and denoted H0, is that β2 is equal to 1. We also define an alternative hypothesis, denoted H1, which represents your conclusion if the experimental test indicates that H0 is false. In the present case H1 is simply that β2 is not equal to 1. The two hypotheses are stated using the notation
H0: β2 = 1,
H1: β2 ≠ 1.
In this particular case, if we really believe that price inflation is equal to wage inflation, we are trying to establish the credibility of H0 by subjecting it to the strictest possible test and hoping that it emerges unscathed. In practice, however, it is more usual to set up a null hypothesis and attack it with the objective of establishing the alternative hypothesis as the correct conclusion.

The following discussion uses the simple regression model (3.1). It will be confined to the slope coefficient, β2, but exactly the same procedures are applied to the constant term, β1. We will take the general case, where you have defined a null hypothesis that β2 is equal to some specific value, say β20 , and the alternative hypothesis is that β2 is not equal to this value (H0: β2 = β20 , H1: β2 ≠ β20); you may be attempting to attack or defend the null hypothesis as it suits your purpose. We will assume that the four Gauss–Markov conditions are satisfied.

Developing the Implications of a Hypothesis. If H0 is correct, values of b2 obtained using regression analysis will be distributed with mean β20 and variance 
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 (see 4.14). We will now introduce the assumption that u has a normal distribution. If this is the case, b2 will also be normally distributed, as shown in Figure 4.1. "sd" in the figure refers to the standard deviation of b2. In view of the structure of the normal distribution, most values of b2 will lie within two standard deviations of β20.
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Figure 4.1. Structure of the normal distribution of b2 in terms of standard deviations about the mean

Initially we will assume that we know the standard deviation of the distribution of b2. This is a most unreasonable assumption, and we will drop it later. In practice we have to estimate it, along with β1 and β2, but it will simplify the discussion. 
We will illustrate this with the price inflation/wage inflation model (4.17). Suppose that for some reason we know that the standard deviation of b2 is equal to 0.1. Then, if our null hypothesis H0: β2 = 1 is correct, regression estimates will generally lie between 0.8 and 1.2.

Compatibility, Freakiness and the Significance Level. Suppose that we take an actual sample of observations on average rates of price inflation and wage inflation and estimate β2 using regression analysis. If the estimate is close to 1.0, we should almost certainly be satisfied with the null hypothesis, since it and the sample result are compatible with one another, but suppose, on the other hand, that the estimate is a long way from 1.0. Suppose that it is equal to 0.7. This is three standard deviations below 1.0. If the null hypothesis is correct, the probability of being three standard deviations away from the mean, positive or negative, is only 0.0027, which is very low. You could come to either of two conclusions about this result:

1. You could continue to maintain that your null hypothesis is correct, and that the experiment has given a freak result. 

2. You could conclude that the hypothesis is contradicted by the regression result. In other words, you adopt the alternative hypothesis H1.

How do you decide when to choose (1) and when to choose (2)? How small should the probability be before choosing (2)?

In most applied work in economics either 5% or 1% is taken as the critical limit. If 5% is taken, the switch to (2) is made when the null hypothesis implies that the probability of obtaining such an extreme value of b2 is less than 5%. The null hypothesis is then said to be rejected at the 5% significance level.

This occurs when b2 is more than 1.96 standard deviations from β20. If you look up the normal distribution table, you will see that the probability of b2 being more than 1.96 standard deviations above its mean is 2.5%, and similarly the probability of it being more than 1.96 standard deviations below its mean is 2.5%. The total probability of it being more than 1.96 standard deviations away is thus 5%.

We can summarize this decision rule mathematically by saying that we will reject the null hypothesis if

z > 1.96 or z < –1.96 




(4.18)

where z is the number of standard deviations between the regression estimate and the hypothetical value of β2:
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(4.19)
The null hypothesis will not be rejected if
–1.96 ≤ z ≤ 1.96 




(4.20)

or in other terms
β20 – 1.96 s.d.(b2) ≤ b2 ≤ β20 + 1.96 s.d.(b2) . 

(4.21)
Equation (4.21) gives the set of values of b2 which will not lead to the rejection of H0. It is known as the acceptance region for b2, at the 5% significance level.

In the case of the price inflation/wage inflation example, where s.d.(b2) is equal to 0.1, you would reject at the 5% level if b2 lies more than 0.196 above or below the hypothetical mean, that is, above 1.196 or below 0.804. The acceptance region is illustrated in Figure 4.2.

[image: image83.emf]
Figure 4.2. Acceptance region for b2, 5% significance level

Similarly, the null hypothesis is said to be rejected at the 1% significance level if the hypothesis implies that the probability of obtaining such an extreme value of b2 is less than 1%. This occurs when 
z > 2.58 or z < –2.58 .




(4.22)
You may ask, why do people usually report, or at least consider reporting, the results at both the 5% and the 1% significance levels? Why not just one? The answer is that they are trying to strike a balance between the risks of making Type I errors and Type II errors. A Type I error occurs when you reject a true null hypothesis. A Type II error occurs when you do not reject a false one.
What Happens if the Standard Deviation of b2 is Not Known. So far we have assumed that the standard deviation of b2 is known, which is most unlikely in practice. It has to be estimated by the standard error of b2, given by (4.16). This causes two modifications to the test procedure. 
First, z is now defined using s.e.(b2) instead of s.d.(b2), and it is referred to as the t statistic:
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(4.23)
Second, the critical levels of t depend upon what is known as a t distribution instead of a normal distribution. It is a cousin of the normal distribution, its exact shape depends on the number of degrees of freedom in the regression, and it approximates to the normal distribution increasingly closely as the number of degrees of freedom increases. The special table gives the critical values of t cross-classified by significance level and the number of degrees of freedom.

The estimation of each parameter in a regression equation consumes one degree of freedom in the sample. Hence the number of degrees of freedom is equal to the number of observations in the sample minus the number of parameters estimated. The parameters are the constant (assuming that this is specified in the regression model) and the coefficients of the explanatory variables. In the present case of simple regression analysis, only two parameters, β1 and β2, are estimated and hence the number of degrees of freedom is n – 2. 

The critical value of t, which we will denote tcrit, replaces the number 1.96 in (4.20), so the condition that a regression estimate should not lead to the rejection of H0: β2 = β20 is

-tcrit ≤ t ≤ tcrit . 




(4.24)
4.8. Confidence Intervals

Thus far we have been assuming that the hypothesis preceded the empirical investigation. This is not necessarily the case. Usually theory and experimentation are interactive. The question is, how far can a hypothetical value differ from our experimental result before they become incompatible and we have to reject the null hypothesis?

We can answer this question by exploiting the previous analysis. From (4.23), (4.24) we can obtain the following double inequality

b2 – s.e.(b2)tcrit ≤ β2 ≤ b2 + s.e.(b2)tcrit . 


(4.25)

Any hypothetical value of β2 that satisfies (4.25) will therefore automatically be compatible with the estimate b2, that is, will not be rejected by it. The set of all such values, given by the interval between the lower and upper limits of the inequality, is known as the confidence interval for β2.

Note that the center of the confidence interval is b2 itself. The limits are equidistant on either side. Note also that, since the value of tcrit depends upon the choice of significance level, the limits will also depend on this choice. If the 5% significance level is adopted, the corresponding confidence interval is known as the 95% confidence interval. If the 1% level is chosen, one obtains the 99% confidence interval, and so on.

4.9. One-Tailed t Tests

Thus far the alternative hypothesis has been merely the negation of the null hypothesis. However, if we are able to be more specific about the alternative hypothesis, we may be able to improve the testing procedure. We will investigate three cases: first, the very special case where there is only one conceivable alternative true value of β2, which we will denote β21 ; second, where, if β2 is not equal to β20 , it must be greater than β20 ; and third, where, if β2 is not equal to β20 , it must be less than β20 .
H0: β2 = β20 , H1: β2 = β21. For sake of argument we will assume that β21 ˃ β20 .

Suppose that we wish to test H0 at the 5% significance level, and we follow the usual procedure discussed earlier. We locate the limits of the upper and lower 2.5% tails under the assumption that H0 is true, indicated by A and B in Figure 4.3, and we reject H0 if the regression coefficient b2 lies to the left of A or to the right of B.
[image: image85.emf]
Figure 4.3. Distribution of b2 under H0 and H1
Now, if b2 does lie to the right of B, it is more compatible with H1 than with H0; the probability of it lying to the right of B is greater if H1 is true than if H0 is true. We should have no hesitation in rejecting H0 in favor of H1.

However, if b2 lies to the left of A, the test procedure will lead us to a perverse conclusion. It tells us to reject H0 in favor of H1, even though the probability of b2 lying to the left of A is negligible if H1 is true. It is more logical to assume that H0 is true. 

Hence we will reject H0 only if b2 lies in the upper 2.5% tail, that is, to the right of B. We are now performing a one-tailed test, and we have reduced the probability of making a Type I error to 2.5%. Since the significance level is defined to be the probability of making a Type I error, it is now also 2.5%.

As we have seen, economists usually prefer 5% and 1% significance tests, rather than 2.5% tests. If you want to perform a 5% test, you move B to the left so that you have 5% of the probability in the tail and the probability of making a Type I error is increased to 5%. (Question: why would you deliberately choose to increase the probability of making a Type I error? Answer, because at the same time you are reducing the probability of making a Type II error. Most of the time your null hypothesis is that the coefficient is 0, and you are trying to disprove this, demonstrating that the variable in question does have an effect. In such a situation, by using a one-tailed test, you reduce the risk of not rejecting a false null hypothesis, while holding the risk of a Type I error at 5%.)

If the standard deviation is unknown and has been estimated as the standard error of b2, you have to use a t distribution: you look up the critical value of t in the special table and you move B to the left using (4.23), (4.24). Similarly, if you want to perform a 1% test, you move B to the point where the right tail contains 1% of the probability. 
We have assumed that β21 ˃ β20. Obviously, if it is less than β20 , we should use the same logic to construct a one-tailed test, but now we should use the left tail as the rejection region for H0.

The Power of a Test. In this particular case we can calculate the probability of making a Type II error, that is, of accepting a false hypothesis. Suppose that we have adopted a false hypothesis H0: β2 = β20 and that an alternative hypothesis H1: β2 = β21 is in fact true. If we are using a two-tailed test, we will fail to reject H0 if b2 lies in the interval AB in Figure 4.4.

[image: image86.emf]
Figure 4.4
Since H1 is true, the probability of b2 lying in that interval is given by the area under the curve for H1 to the left of B, the lighter shaded area in the Figure 4.4. If this probability is denoted γ , the power of the test, defined to be the probability of not making a Type II error, is (1 – γ). Obviously, you have a trade-off between the power of the test and the significance level. The higher the significance level, the further B will be to the right, and so the larger γ will be, so the lower the power of the test will be.

In using a one-tailed instead of a two-tailed test, you are able to obtain greater power for any level of significance. As we have seen, you would move B to the left if you were performing a one-tailed test at the 5% significance level, thereby reducing the probability of accepting H0 if it happened to be false.

H0: β2 = β20 , H1: β2 > β20 . We have discussed the case in which the alternative hypothesis involved a specific hypothetical value β21, with β21 greater than β20. Clearly, the logic that led us to use a one-tailed test would still apply even if H1 were more general and merely asserted that β21 > β20. Therefore, we would still prefer a one-tailed t test, using the right tail as the rejection region, to a two-tailed test. Note that, since β21 is not defined, we now have no way of calculating the power of such a test. However, we can still be sure that, for any given significance level, the power of a one-tailed test will be greater than that of the corresponding two-tailed test.

H0: β2 = β20, H1: β2 < β20. Similarly if the alternative hypothesis were H1: β2 < β20, we would prefer a one-tailed test using the left tail as the rejection region.

One-tailed tests are very important in practice in econometrics. The usual way of establishing that an explanatory variable really influences a dependent one is to set up the null hypothesis H0: β2 = 0 and try to refute it. Very frequently, our theory is strong enough to tell us that, if X influences Y, its effect will be in a given direction. If we have good reason to believe that the effect is not negative, we are to use the alternative hypothesis H1: β2 > 0 instead of the more general H1: β2 ≠ 0. This is an advantage because the critical value of t for rejecting H0 is lower for the one-tailed test, so it is easier to refute the null hypothesis and establish the relationship.

4.10. The F Test of Goodness of Fit

Even if there is no relationship between Y and X, in any given sample of observations there may appear to be one, if only a faint one. Only by coincidence will the sample covariance be exactly equal to 0. Accordingly, only by coincidence will the correlation coefficient and R2 be exactly equal to 0. So how do we know if the value of R2 for the regression reflects a true relationship or if it has arisen as a matter of chance?

The traditional procedure is to use an indirect approach and perform an F test based on analysis of variance. 
We take as our null hypothesis that there is no relationship between Y and X, that is, H0: β2 = 0. H1: β2 ≠ 0. 
We shall use the expression (3.15). The F statistic for the goodness of fit of a regression is written as the explained sum of squares, per explanatory variable, divided by the residual sum of squares, per degree of freedom remaining:
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(4.26)
where k is the number of parameters in the regression equation (intercept and k – 1 slope coefficients).

By dividing both the numerator and the denominator of the ratio by TSS, this F statistic may equivalently be expressed in terms of R2:
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(4.27)
In the present context, k is 2, so (4.27) becomes
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(4.28)
Having calculated F from your value of R2, you look up Fcrit, the critical level of F, in the appropriate table. If F ˃ Fcrit, you reject the null hypothesis. The table gives the critical levels of F at the 5% and 1% significance levels. In each case the critical level depends on the number of explanatory variables, k – 1, and the number of degrees of freedom, n – k. 

Why do people bother with this indirect approach? Why not have a table of critical levels of R2? The answer is that the F table is useful for testing many forms of analysis of variance, of which R2 is only one. Rather than have a specialized table for each application, it is more convenient (or, at least, it saves a lot of paper) to have just one general table, and make transformations like (4.27) when necessary.

4.11. Relationship between the F Test of Goodness of Fit and the t Test on the Slope Coefficient 

In the context of simple regression analysis (and only simple regression analysis) the F test on R2 and the two-tailed t test on the slope coefficient both have H0: β2 = 0 as the null hypothesis and H1: β2 ≠ 0 as the alternative hypothesis. This gives rise to the possibility that they might lead to different conclusions. Fortunately, they are in fact equivalent. The F statistic is equal to the square of the t statistic, and the critical value of F, at any given significance level, is equal to the square of the critical value of t. For a proof see [2]. 
F = t2 . 





(4.29)
In simple regression analysis the fact that they are equivalent means that there is no point in performing both. Indeed, you would look ignorant if you did. Obviously, provided that it is justifiable, a one-tailed t test would be preferable to either.
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