Министерство образования и науки Российской Федерации

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

А.П. Савикин, И.А. Гришин

Синтез керамических образцов ZBLAN: Ho³⁺ и ZBLAN: Ho³⁺ – Yb³⁺ и исследование антистоксовой люминесценции

Учебно-методическое пособие

Рекомендовано методической комиссией химического факультета для магистрантов химического и радиофизического факультетов, обучающихся по направлениям подготовки 04.04.01 «Химия», 18.04.01 «Химическая технология», «Радиофизика»

> Нижний Новгород 2016

УДК 535.15 + 666.3 ББК В22.345 я73 С–13

С–13 Савикин А.П., Гришин И.А. Синтез керамических образцов ZBLAN: Ho³⁺ и ZBLAN: Ho³⁺ – Yb³⁺и исследование антистоксовой люминесценции: Учебно-методическое пособие. – Нижний Новгород: Нижегородский госуниверситет, 2016. – 19 с.

Рецензент:к.ф.-м.н., доцент Чигиринский Ю.И.

Пособие «Синтез керамических образцов ZBLAN: Ho³⁺ и ZBLAN: Ho³⁺ – Yb³⁺и исследование антистоксовой люминесценции»посвященосинтезу образцов керамики $53ZrF_4 - 20BaF_2 - 1HoF_3 - 3YbF_3 - 3AlF_3 - 20NaF$ и $53ZrF_4 - 20BaF_2 - 3LaF_3 - 1HoF_3 - 3AlF_3 - 20NaF$ (мольн. %) и изучению явления антистоксовой люминесценции в синтезированных образцах, возникающей при возбуждении инфракрасным излучением Tm: YLF лазера на длине волны 1.91 мкм.

В теоретической части пособия рассмотрены механизмы возникновения антистоксовой люминесценции, приведено объяснение возникновения антистоксовой люминесценции Ho³⁺ ZBLANи Ho³⁺ – Yb³⁺ ZBLAN – керамик в областях длин волн 540 нм и 650 нм, соответствующих переходам: ${}^{5}S_{2}$, ${}^{5}F_{4} \rightarrow {}^{5}I_{8}$, ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$.

Предназначено для студентов химического факультета, обучающихся по направлениям подготовки 04.04.01 «Химия», 18.04.01 «Химическая технология», 011800 «Радиофизика».

Ответственный за выпуск:

председатель методической комиссии химического факультета ННГУ д.х.н., доцент **А.В. Маркин**

УДК 535.15 + 666.3 ББК В22.345 я73

© Нижегородский государственный университет им. Н.И. Лобачевского, 2016 © Савикин А.П., Гришин И.А., 2016

СОДЕРЖАНИЕ

		стр.
	ВВЕДЕНИЕ	4
1.	ТЕОРЕТИЧЕСКАЯ ЧАСТЬ	
	1.1. Механизмы возникновения антистоксовой люминесценции	6
	1.1.1. Резонансное поглощение	6
	1.1.2. Нерезонансное ступенчатое поглощение	8
	1.1.3. Нерезонансное суммирование энергии возбуждения	8
	1.2. Объяснение возникновения антистоксовой люминесценции в	
	образцах состава ZBLAN: 1 Ho ³⁺ - 3Yb ³⁺	13
2.	ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	
	2.1. Синтез образцовкерамики	14
	2.2. Экспериментальная установка для измерения спектральных	
	характеристик антистоксовой люминесценции	14
	2.3. Спектральные характеристики образцов	15
	2.4. Задания к работе	17
	СПИСОК ЛИТЕРАТУРЫ	18

введение

Антистоксовая люминесценция редкоземельных элементов (РЗЭ) в аморфных или кристаллических матрицах является одним из эффективных методов визуализации инфракрасного (ИК) излучения. В широко распространённых антистоксовых люминофорах используются доноракцепторные пары ионов $Yb^{3+} - Tm^{3+}$, $Yb^{3+} - Er^{3+}$, $Yb^{3+} - Ho^{3+}$. Высокий выход антистоксовой люминесценции обеспечивается донорными ионами иттербия, в основном, за счёт увеличения отношения вероятности суммирования энергии возбуждения к вероятности кроссрелаксации.

Так, пара $Yb^{3+} - Ho^{3+}$ эффективно преобразует ИК – излучение в полосе от $\lambda = 870$ нм до $\lambda = 980$ нм в результате переходов ${}^{5}F_{3} \rightarrow {}^{5}I_{8}$, ${}^{5}S_{2} ({}^{5}F_{4}) \rightarrow {}^{5}I_{8}$ ионов Ho³⁺ в излучение с длинами волн $\lambda = 480$ нм и $\lambda = 540$ нм.

Иногда помимо Yb³⁺ в матрице присутствует второй донор, например, Nd³⁺, тогда возбуждение осуществляется через Nd³⁺ по схеме Nd³⁺ \rightarrow Yb³⁺ \rightarrow Ho³⁺, с $\lambda_{B035} = 800$ нм.

Электронный уровень ${}^{5}I_{7}$ иона Ho³⁺ является подходящим возбуждаемым уровнем для использования этого РЗЭ в качестве активного элемента, восприимчивого к двухмикронному излучению. Визуализация двухмикронного излучения является актуальной проблемой, поскольку лазеры, работающие в диапазоне волн (1.9 – 2.1) мкм, все шире используются в системах контроля загрязнения окружающей среды, лидарах, диагностической медицине и хирургии.

Впервые эффект визуализации лазерного излучения двухмикронного диапазона был зарегистрирован во фторидном волокне легированном Ho³⁺. Была обнаружена люминесценция ионов Ho³⁺ в видимой области с длинами волн 491 нм, 544 нм и 656 нм с преобладанием красной полосы.

Результаты исследования механизма возникновения антистоксовой люминесценции с уровней ${}^{5}S_{2}$, ${}^{5}F_{4}$ (545 нм), ${}^{5}F_{5}$ (650 нм), ${}^{5}I_{4}$ (750 нм) ионов Ho³⁺ при возбуждении на длине волны 1,9 мкм излучением Tm: YLF лазера в монокристаллах и керамике CaF₂: Ho³⁺ были использованы для создания визуализатора излучения в спектральной области 1800 – 2150 нм на основе материалов CaF₂: Ho³⁺, работающий в диапазоне плотности мощности 0.4 – 340 кВт / см².

Максимальная эффективность кооперативных люминофоров достигается в матрицах с меньшей вероятностью безызлучательной многофононной релаксации. К таким средам относятся фторцирконатные стёкла состава ZBLAN с энергией высокочастотных фононов $hv_{phon} \approx 575$ см⁻¹, которые являются хорошей средой для изготовления ап-конверсионных волоконных лазеров. Стекло составлено из фторидов тяжелых металлов, межатомные связи достаточно слабые и поэтому квант колебательной энергии – фонон – составляет $\approx 500 - 580$ см⁻¹, в зависимости от конкретного состава стекла. Для сравнения, фононная энергия кварцевых стекол составляет около 1100 см⁻¹. Вероятность безызлучательной релаксации с участием фононов стекла

4

экспоненциально падает со снижением энергии фонона, поэтому во фторидном стекле высока вероятность излучательных переходов с $\lambda \ge 2$ мкм.

Кроме того, термический отжиг стекол часто ведет к существенному усилению люминесценции за счет образования кристаллической фазы. Во фторцирконатных стеклах ZBLAN может образовываться кристаллическая фаза β -BaZrF₆ или BaCl₂ в стеклах ZBLAN – BaCl₂. В образцах ZBLAN – BaCl₂: Er³⁺ при образовании нано кристаллической фазы BaCl₂ было обнаружено усиление люминесценции на ионах Er³⁺.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1. МЕХАНИЗМЫ ВОЗНИКНОВЕНИЯ АНТИСТОКСОВОЙ ЛЮМИНЕСЦЕНЦИИ

Исторически Н. Бломбергеном первым [1] был предложен механизм последовательного (ступенчатого) поглощения ИК фотонов в одном и том же ионе РЗ, переходящем при этом в состояния с более высокой энергией.

Позднее, Ф. Озелем был предложен механизм последовательного (ступенчатого) суммирования энергии нескольких ионов, а П.П. Феофиловым и В.В. Овсянкиным одновременная (кооперативная) сенсибилизация излучающего иона другими ионами, поглощающими ИК излучение [2,3].

вероятность возникновения Наибольшую антистоксовой люминесценцииимеют два процесса. Это – последовательное (ступенчатое) поглощение фотонов возбуждающего излучения и обмен энергией между ионами. Преобладание того или другого процесса можно определить из кинетики послесвечения - изменения интенсивности люминесценции ионов РЗЭ после окончания действия импульса возбуждающего излучения. В первом случае сразу после окончания импульса возбуждения начинается затухание антистоксовой люминесценции. Время затухания $\tau_{a.c}$ сравнимо с временем жизни $\tau_{g.v.}$ РЗЭ иона на верхнем уровне излучательного перехода. Во втором случае интенсивность люминесценции с повышением частоты может продолжать увеличиваться после прекращения возбуждения. Этот процесс называется разгоранием люминесценции. Время последующего затухания послесвечения превышает время жизни верхнего уровня излучательного перехода $\tau_{ac} > \tau_{bv}$.

Изменение кинетики объясняется тем, что заселение верхнего уровня происходит за счёт взаимодействия ионов, находящихся в ниже расположенных возбуждённых состояниях, время жизни которых, больше времени жизни верхнего уровня антистоксовой люминесценции.

1.1.1.РЕЗОНАНСНОЕ ПОГЛОЩЕНИЕ

Энергия кванта лазерного излучения $E_L \approx 5240 cm^{-1}$ ($\lambda_L = 1908$ нм) совпадает с энергией перехода иона Ho³⁺ из основного состояния ${}^{5}I_8$ в первое возбуждённое ${}^{5}I_7$ (сечение поглощения $\sigma_{12}(\lambda = 1908 nm) \approx 024 \cdot 10^{-20} cm^2$). Поэтому уровень ${}^{5}I_7$ имеет наибольшую населённость из всех остальных возбуждённых уровней.

Ширина полосы поглощения перехода из основного состояния ${}^{5}I_{8} \rightarrow {}^{5}I_{7}$, соответствующего первому каскаду возбуждения по уровню 0.1 от максимума, равна $\delta\lambda_{0,1} \approx 200$ нм и находится в пределах от $\lambda_{1} \approx 1870$ нм до $\lambda_{2} \approx 2070$ нм.

Вторая ступень внутри центрового перехода иона Ho^{3+} может соответствовать переходам $2 \rightarrow 3 \ ({}^{5}I_{7} \rightarrow {}^{5}I_{6})$ или $2 \rightarrow 4 \ ({}^{5}I_{7} \rightarrow {}^{5}I_{5})$. Оба перехода не резонансные (*puc. 1a*).

б

Рис. 1. Диаграммы энергетических уровней, показывающие процессы антистоксовой люминесценции а – в образце ZBLAN:1Ho³⁺; б – в образце ZBLAN:1Ho³⁺ + 3Yb³⁺

1.1.2. НЕРЕЗОНАНСНОЕ СТУПЕНЧАТОЕ ПОГЛОЩЕНИЕ

вероятностей $W_s^{abs}(\Delta E)$ Стоксова возбуждения, Значения когда $\Delta E = E_L - (E_n - E_m)$ и $W_{a-S}^{abs} (\Delta E)$ анти- Стоксова возбуждения [$\Delta E = (E_n - E_m) - E_L$] на переходе $m \to n$ можно найти согласно выражениям [4]:

$$W_{S}^{abs}\left(\Delta E\right) = W^{abs}\left(0\right) \cdot \exp\left(-S_{0}\right) \exp\left(-\alpha_{S}\Delta E\right)$$
(1)

$$W_{a-S}^{abs}(\Delta E) = W^{abs}(0) \cdot \exp(-S_0) \exp(-(\alpha_s + 1/kT)) \Delta E$$
(2)

где:

 $W^{abs}(0) = \frac{I\sigma_{m \to n}}{hv_L}$ – вероятность резонансного поглощения, являющаяся

пределом $W^{abs}(\Delta E)$ при $\Delta E \rightarrow 0$,

I – интенсивность возбуждающего излучения,

 $\sigma_{m \to n}$ – сечение поглощения,

*hv*_L – энергия кванта лазерного излучения,

 $\alpha_{s} = (\hbar \omega_{phon})^{-1} \{ \ln \left\lceil \overline{N} / S_{0}(\overline{n}+1) \right\rceil - 1 \}$ – коэффициент, характеризующий матрицу, $g = S_0 (2\overline{n} + 1)$ – константа электрон-фононного взаимодействия,

 $\bar{N} = \frac{\Delta E}{\hbar \omega_{phon}}$ – число фононов, необходимое для перекрытия энергетического

зазора ΔE ,

 $\overline{n} = \left| \exp\left(\frac{\hbar\omega_{phon}}{k_{B}T} - 1\right) \right|^{-1}$ – число заполнения фононных состояний при

заданной температуре Т.

1.1.3. НЕРЕЗОНАНСНОЕ СУММИРОВАНИЕ ЭНЕРГИИ ВОЗБУЖДЕНИЯ (МЕЖИОННЫЙ ПЕРЕНОС ЭНЕРГИИ)

Величины вероятностей W^{tr} (ΔE) межионного переноса энергии вследствие диполь-дипольного взаимодействия двух ионов *Но*³⁺, находящихся В состояниях ⁵*I*₇ с разбалансом *ΔЕ* перекрываемым за счёт испускания или поглощения \overline{N} фононов можно оценить согласно выражению:

$$W^{\prime\prime\prime}(\Delta E) = W^{\prime\prime\prime}(0) \cdot \exp(-\beta \Delta E) \begin{cases} (\overline{n}+1)^{\overline{N}} \\ \overline{n}^{\overline{N}} \end{cases} , \qquad (4)$$

где:

$$W^{tr}(0)$$
 – вероятность меж ионного взаимодействия при $\Delta E = 0$,

$$\beta_{tr} = \alpha_{nonrad} - (\hbar \omega_{phon})^{-1} \ln 2$$
 – константа переноса энергии,
 $\alpha_{nonrad.} \approx 5 \times 10^{-2} \exp(-6.5 \times 10^{-3} \hbar \omega_{phon})$ – константа безызлучательной

релаксации, выраженная через максимальную частоту фононов ω_{phon} .

Верхний сомножитель в фигурных скобках соответствует испусканию фононов, нижний - поглощению.

Вероятность $W^{tr}(0) = P(0)N_2$ выражается через коэффициент переноса энергии $P(0) \approx 10^{-15} \frac{\lambda^6}{\tau^2}$ (см³с⁻¹) и объёмную плотность населённости N_2 ионов Ho^{3+} на уровне ${}^{5}I_7$, где:

 λ – длина волны в мкм, соответствующая переходу ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$,

 τ – время жизни ионов Ho^{3+} в состоянии ${}^{5}I_{7}$.

Согласно теории Ферстера – Декстера – Галанина [4], максимальная вероятность переноса энергии при совпадении спектров излучения доноров и спектров поглощения акцепторов для диполь-дипольного взаимодействия определяется выражением:

$$W^{tr}(0) = \frac{3}{4} \left(\frac{\lambda}{2\pi R}\right)^6 \Delta \tau A_A A_D , (5)$$

где:

R – расстояние между ионами(при достаточно высоких концентрациях рабочих ионов перенос энергии совершается преимущественно через ближайшие узлы решётки, поэтому *R* - расстояние между узлами решётки);

A_A и *A_D*-вероятности спонтанного излучения на соответствующих переходах акцептора и донора, соответственно;

 $\Delta \tau$ – время релаксации в пределах ширины уровня ($\Delta \tau = \frac{1}{2\pi\Delta\tilde{v}c}$, $\Delta\tilde{v}$ – ширина спектральной полосы).

Вероятности безызлучательной внутрицентровой релаксации с возбуждённых уровней с участием фононов матрицы находятся согласно выражению:

 $W_{M/P}(\Delta E) = C \exp(-\alpha \Delta E).(6)$

Коэффициенты С и α для стекла ZBLAN имеют значения $1.99 \times 10^5 c^{-1}$ и 0.0021 см, соответственно.

Все возможные переходы третьего и четвёртого каскадов, обеспечивающие заселение верхних уровней ${}^{5}F_{5}$ и ${}^{5}S_{2}$, ${}^{5}F_{4}$ переходов красной и зелёной полос люминесценции, происходящие как с поглощением лазерного излучения, так и за счёт межионного взаимодействия, также находятся вне резонанса. Чрезвычайно слабая зелёная люминесценция (*puc. 2a*) указывает на малую вероятность заселения уровней ${}^{5}S_{2}$, ${}^{5}F_{4}$.

б Рис. 2. Спектры люминесценции образцов $a - ZBLAN:1 Ho^{3+}; 6 - ZBLAN: 1 Ho^{3+} - 3 Yb^{3+}$

Точное значение величины N₂ можно найти из решения системы балансных уравнений для населённостей уровней, между которыми происходят переходы, приводящие к антистоксовой люминесценции. Для этого необходимо знать коэффициенты кооперирования и кроссрелаксации.

Однако, можно сделать грубые оценки населённости N_2 уровня 5I_7 , учитывая то, что данный уровень имеет наибольшую заселённость по сравнению с остальными возбуждёнными состояниями при малой величине интенсивности лазерного излучения (вблизи порога визуализации). Поэтому можно ограничиться системой балансных уравнений для основного 5I_8 и первого возбуждённого состояния, учитывая только излучательную релаксацию уровня 5I_7 , а именно спонтанное излучение с вероятностью $A_{2\to 1}$.

Излучательное время жизни ионов Ho^{3+} на уровне ${}^{5}I_{7}$, найденное из спектров поглощения имело величину $\tau_{rad} = A_{21}^{-1} \approx 13mc$. Коэффициент переноса энергии возбуждения $P(0) \approx 3 \cdot 10^{-16} c^{-1} cm^{3}$.

Концентрация ионов Ho^{3+} в исследуемых образцах $N_0 \approx 2 \cdot 10^{20} \, cm^{-3}$. При интенсивности возбуждающего излучения $I \approx 15W / cm^2 \left(P_{pump} = 1W\right)$ вероятность резонансного поглощения $W^{abs}(0) \approx 0.35c^{-1}$ и $N_2 \approx 1 \cdot 10^{18} \, cm^{-3}$. Вероятность кооперирования $W^{tr}(0) \approx 3 \cdot 10^2 \, c^{-1}$.

Сечения поглощения из возбуждённого состояния ${}^{5}I_{7}$ в состояния ${}^{5}I_{6}$ и ${}^{5}I_{5}$ можно считать одинаковыми равными $\sigma_{2\rightarrow3} = \sigma_{2\rightarrow4} \approx 10^{-20} cm^{2}$. Тогда вероятность резонансного поглощения на данных переходах равна $W^{abs}(0) \approx 1,5c^{-1}$. Полученные оценки вероятностей переходов на второй ступени приведены в *табл. 1, 2*.

Таблица 1

Переход	$\Delta E, cm^{-1}$	\overline{N}	α_s, cm	$W^{abs}\left(\Delta E\right)\left(P=1W\right),c^{-1}$
${}^{5}I_{7} \rightarrow {}^{5}I_{6}$	1670	6,5	0,0156	$7,0\cdot 10^{-12}$
${}^{5}I_{7} \rightarrow {}^{5}I_{5}$	800	3,0	0,012	$4, 4 \cdot 10^{-6}$

Переходы с поглощением лазерного излучения

Таблица 2

Переход	$\Delta E, cm^{-1}$	\overline{N}	$\alpha_{_{nonrad}}, cm$	β_{tr}, cm	$W^{tr}(\Delta E)(P=1W),c^{-1}$
${}^{5}I_{7} \rightarrow {}^{5}I_{6}$	1560	6,0	0,01	0,007	0,07
${}^{5}I_{7} \rightarrow {}^{5}I_{5}$	920	3,6	0,01	0,007	0,8

Переходы с кооперированием энергии возбуждения

Временная зависимость затухания красной полосы антистоксовой люминесценции (*puc. 3a*) также свидетельствует о преобладании механизма кооперирования энергии возбуждения при заселении уровня ${}^{5}F_{5}$ ионов Ho^{3+} .

Таким образом, можно сделать вывод о том, что при малой интенсивности лазерного излучения ($I \approx 15W/cm^2$) уровни 5I_5 и 5I_6 заселяются в основном за счёт межионного переноса энергии (кооперирования).

Проводя аналогичные оценки можно сказать, что и на третьей ступени заселения уровня ${}^{5}F_{5}$ наибольшую вероятность имеет процесс кооперирования ионов Ho^{3+} , находящихся в ${}^{5}I_{7}$ и ${}^{5}I_{5}$ состояниях.

б

Рис. 3. Осциллограммы полос антистоксовой люминесценции: а – красная полоса, б – зелёная полоса.

1.2. ОБЪЯСНЕНИЕ ВОЗНИКНОВЕНИЯ АНТИСТОКСОВОЙ ЛЮМИНЕСЦЕНЦИИ В ОБРАЗЦАХ СОСТАВА ZBLAN 1 HO³⁺ - ЗҮВ³⁺

Исчезновение излучения на длине волны $\lambda = 900$ нм объясняется интенсивным переносом энергии с уровня ${}^{5}I_{5}$ ионов гольмия на уровень ${}^{4}F_{5/2}$ ионов иттербия. Возникновение излучения на $\lambda = 753$ нм (переход ${}^{5}I_{4} \rightarrow {}^{5}I_{8}$) свидетельствует о заселении уровня ${}^{5}I_{4}$ за счёт взаимодействия возбуждённых ионов Yb³⁺ с ионами Ho³⁺, находящихся в состоянии ${}^{5}I_{7}$. Изменился цвет свечения. Возрастание зелёной люминесценции ($\lambda = 545$ нм), интенсивность которой в 1.5 раза превышает интенсивность красного свечения, явиляется результатом межионного взаимодействия. Переход ${}^{4}F_{5/2} \rightarrow {}^{4}F_{7/2}$ ионов Yb³⁺ находящихся в состоянии в резонансе с переходом ${}^{5}I_{6} \rightarrow {}^{5}S_{2}$, ${}^{5}F_{4}$ ионов Ho³⁺(*puc. 16*). Поэтому вероятность суммирования энергии возбуждённых ионов Yb³⁺, находящихся в состоянии ${}^{4}F_{5/2}$, и ионов Ho³⁺, находящихся в состоянии ${}^{5}I_{6}$, значительно превышает вероятность заселения при последовательном поглощении нескольких квантов излучения накачки ионами Ho³⁺.

Вероятность заселения уровня ${}^{4}F_{5}$ ионов Ho^{3+} , происходящее с участием возбуждённых ионов Yb^{3+} , значительно меньше вероятности заселения верхних уровней ${}^{5}S_{2}$, ${}^{5}F_{4}$ красной полосы люминесценции, вследствие недостающей суммарной энергии ($\approx 110 \text{ см}^{-1}$) для перехода ${}^{5}I_{7} \rightarrow {}^{5}F_{2}$: $E_{Ho}({}^{5}I_{7}) + E_{Yb}({}^{4}F_{5/2}) < E_{Ho}({}^{5}F_{5})$.

Присутствие в спектре антистоксовой люминесценции полосы в области длины волны $\lambda = 975$ нм принадлежащей ионам иттербия (*puc. 16*) на первый взгляд должно снижать эффективность преобразования ИК излучения ионами гольмия. Однако, для образца состава ZBLAN 1 Ho³⁺ – 3Yb³⁺ пороговая плотность мощности визуализации излучения Tm: YLF лазера уменьшаетсяпримерно в два раза, до величины I_{thr} ≈ 2 Wcm⁻². Повышение чувствительности визуализации можно объяснить увеличением эффективности заселения верхних уровней ${}^{5}F_{5}$, ${}^{5}S_{2}$, ${}^{5}F_{4}$ ионов Ho³⁺ за счёт межионного переноса энергии возбуждения от ионов Yb³⁺.

В отличие от случая преобразования излучения с длиной волны $\lambda = 980$ нм парой $Yb^{3+} - Ho^{3+}$ при возбуждении на длине волны $\lambda = 1910$ нм между ионами Ho^{3+} и Yb^{3+} функции донора и акцептора поочерёдно изменяются.

Образцы состава ZBLAN 1 $Ho^{3+} - 3Yb^{3+}$ остаются также эффективными визуализаторами излучения в области длины волны $\lambda = 975$ нм.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. СИНТЕЗ ОБРАЗЦОВКЕРАМИКИ

Стекла ZBLAN, легированные Но и Но – Y, синтезируют из соответствующих фторидов квалификации ос.ч

Синтез проводят в стеклоуглеродных тиглях в проточной инертной атмосфере азота, насыщенного парами CCl₄, в муфельной печи при температуре 800 °C.

Пластины размерами 40 ^x 10 ^x 3 мм³ формуют в сухом перчаточном боксе в разъемной алюминиевой форме.

От полученной пластины отрезают квадратный образец стекла размером 10мм ^x 10мм ^x 3 мм.

Образец подвергают отжигу при температуре 450 °C в течение 1 часа. В результате происходит полная кристаллизация стекла и оно превращается в прочную матовую керамику, которая в дальнейшем используется для исследования люминесцентных свойств.

2.2. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК АНТИСТОКСОВОЙ ЛЮМИНЕСЦЕНЦИИ

Схема экспериментальной установки для измерения спектров люминесценции исследуемых образцовизображена на *рис.* 4.

В качестве источника возбуждения используется непрерывный Tm:YLF лазер (1) с диодной накачкой, работающий на длине волны 1910 нм. Излучение лазера (1) фокусируется линзой (2) на поверхность исследуемого образца (3) в пятно диаметром ≈ 300 мкм. Система линз (4) обеспечивают перенос изображения люминесцирующего пятна с образца (3) на входную щель монохроматора SolarM833(5). При ширине входной и выходной щелей монохроматора 300 мкм спектральное разрешение составляет величину ≈0.2 нм. регистрируется Сигнал выходной шели монохроматора с ThorlabsDET10A. Высокое соотношение фотоприемником сигнал / шум обеспечивается применением метода синхронного детектирования сигнала. Для этого излучение люминесценции модулируется оптическим прерывателем 433 Гц, ThorlabsMC2000 сигнал с фотоприемника (6) С частотой a детектируется на той же частоте при помощи синхронного детектора StanfordResearchSystemsSR810 (8). Управление монохроматором, сбор и обработка данных осуществляется компьютерной системой на основе платы National Instruments NI 6009 (9). Программа управления, обработки и графического отображения данных создана в среде программирования LabVIEW (10).

При измерении затухания антистоксовой люминесценции лазер работает в импульсно-периодическом режиме генерации. Длительность импульсов генерации $\Delta t \approx 100 \mu c$. Частота следования импульсов $f_{cn} \leq 300 \Gamma \mu$. Для увеличения отношения сигнал / шум при регистрации осциллограмм (осциллограф

"TektronixTDS 2024") используется режим накопления сигнала с последующим усреднением.

Оп1исание программного обеспечения установки выдается преподавателем перед выполнением работы.

Пороговая плотность мощности визуализации излучения Tm:YLF лазера представляет собой минимальную мощностью, при которой на образце визуально наблюдается пятно антистоксовой люминесценции.

Рис. 4. Схема экспериментальной установки.

2.3. СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ ОБРАЗЦОВ

Из спектров пропускания образцов в видимом и ближнем ИК диапазонах находятся значения волновых частот и ширин полос поглощения, соответствующих переходам из основного состояния ${}^{5}I_{8}$ иона Ho³⁺(*табл. 3*). На основе полученных результатов строится диаграмма энергетических уровней ионов Ho³⁺ для объяснения возбуждения антистоксовой люминесценции (*рис. 1a*). Значения волновых чисел, приведённых на диаграмме, соответствуют минимумам пропускания на соответствующих переходах. Ширина полос поглощения по уровню 0,5 находится в пределах $\delta_V \approx 250-350$ см⁻¹.

Терм	Е, с м ⁻¹	τ_{rad} , ms	$W_{M/P}$, S^{-1}
${}^{5}I_{7}$	5130	12.65	5.5
${}^{5}I_{6}$	8700	5.87	$0.1 \cdot 10^3$
${}^{5}\mathrm{I}_{5}$	11170	≈ 7.0	$1.1 \cdot 10^3$
${}^{5}\mathrm{I}_{4}$	13300	≈12.0	$2.3 \cdot 10^3$
${}^{5}F_{5}$	15500	0.50	$1.6 \cdot 10^3$
${}^{5}S_{2}, {}^{5}F_{4}$	18500	0.34	$0.3 \cdot 10^3$

Характеристики полос поглощения,
соответствующих переходам из основного состояния Ів

В образцах ZBLAN:Ho³⁺ с однокомпонентным легированием наблюдается люминесценция на длинах волн 54 нм, 650 нм, 900 нм, соответствующих переходам: ${}^{5}S_{2}$, ${}^{5}F_{4} \rightarrow {}^{5}I_{8}$, ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$, ${}^{5}I_{5} \rightarrow {}^{5}I_{8}$. Наибольшей интенсивностью обладает полоса с длиной волны 650 нм (*puc. 2a*).

Дополнительное легирование ионами Yb³⁺ (образцы состава ZBLAN 1 Ho³⁺ - 3Yb³⁺) приводит к существенным изменениям спектра люминесценции керамики при возбуждении излучением на $\lambda_{pump} = 1.9$ мкм (*puc. 2б*). Представленные спектры люминесценции образцов измерялись при разной чувствительности регистрирующей аппаратуры.

2.4. ЗАДАНИЯ К РАБОТЕ

- 1. Синтезировать образцы керамики составов:
 - a) 53ZrF4 20BaF2 1HoF3 3YbF3 3AlF3 20NaF(мольн. %);
 - б) 53ZrF4 20BaF2 3LaF3 1HoF3 3AlF3 20NaF(мольн. %).
- 2. Получить спектры поглощения легированных стекол в диапазоне 0.4 2.9 мкм.
- 3. Исследовать спектры люминесценции образцов при возбужденииизлучениемTm: YLF лазера .
- 4. Исследовать динамикуантистоксовой люминесценции (времена разгорания и затухания).
- 5. Получить концентрационные зависимости спектров и динамики люминесценции.
- 6. Измерить зависимость параметров люминесценции от плотности мощности накачки.

СПИСОКЛИТЕРАТУРЫ

1. Bloembergen, N.Solid state infrared quantum counters /N. Bloembergen//Phys.Rev. Lett, 1959. – V.2. – P. 84-85.

2. Озель, Ф.У. Материалы и устройства, использующие антистоксовы люминофоры с переносом энергии / Ф.У. Озель // ТИИЭР, 1973. – Т. 61. –С. 87–120.

3. Овсянкин, В.В. Феофилов, П.П. Кооперативная сенсибилизация люминесценции в кристаллах, активированных редкоземельными ионами/ В.В. Овсянкин, П.П. Феофилов // Письма в ЖЭТФ, 1966. – Т. 4. – С.471–474.

4. Казарян, А.К. [и др.] Антистоксово преобразование излучения в люминофорах с редкоземельными ионами / А.К. Казарян, Ю.П. Тимофеев, М.В. Фок// Тр. ФИАН, 1986. – Т. 175. – С. 1–65.

5. Ляпин, А.А. Спектрально-люминесцентные свойства монокристаллов и керамики CaF₂:Tm, CaF₂:Ho их применение в лазерной физике / А.А. Ляпин // Дисс. к.ф.-м.н.: 01.04.07, 2014. – 148 с.

6. Пржевуский, А.К., Никаноров, Н.В. Конденсированные лазерные среды: / А.К. Пржевуский, Н.В. Никаноров //books. infmo. ru/file/615.pdf