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Introductory Remarks

Precalculus consists of several branch of mathematics — arith-
metic, algebra, geometry, trigonometry... All of them constitute the
basement for calculus, which, in its turn, is a very important tool of
modern mathematics. Moreover, calculus is used in a lot of applied
science — from biology, physics and engineering to economics and
sociology. All of these subjects involve studying quantities that are
growing or shrinking or moving — in other words, they are changing.
Astronomers study the motions of the planets, chemists study the in-
teraction of substances, physicists study the interactions of physical
objects. Mathematics gives a universal way for describing and study-
ing all of these processes, and one of the central concept on this way is
a function. When you meet it in this book, take it with due attention.
Good luck!



CHAPTER 1

NUMBER SYSTEMS

1. Natural and Rational Numbers

We denote the set of natural numbers {1, 2, 3, . . . } by the symbol
N. The natural numbers allow us to count things, and they have the
property that addition and multiplication is closed within them: that
is, if we add or multiply two natural numbers, we stay within the
natural numbers.

Observe that this is not true for subtraction and division, since,
for example, neither 2 − 7 nor 2 ÷ 7 are natural numbers. We then
say that the natural numbers enjoy closure within multiplication and
addition.

By appending the opposite (additive inverse) of every member of
N to N we obtain the set Z = {. . . , 3, 2, 1, 0, 1, 2, 3, . . . } of integers
(Z for the German word Zahlen, meaning number).

The closure of multiplication and addition is retained by this ex-
tension and now we also have closure under subtraction.

Also, we have gained the notion of positivity. This last proper-
ty allows us to divide the integers into the strictly positive, the
strictly negative or zero, and hence introduces an ordering in the
rational numbers by defining a < b if and only if (b− a) is positive.

Enter now the rational numbers, commonly called fractions,
which we denote by the symbol Q (Q for quotients). They are the
numbers of the form a

b with a, b from Z, b non equal to 0, that is, the
division of two integers, with the divisor distinct from zero.

Observe that every rational number a
b is a solution to the equation

bx− a = 0 (with x as the unknown).

8



2. FRACTIONS 9

It can be shown that the rational numbers are precisely those
numbers whose decimal representation either is finite (e.g., 0.123) or
is periodic (e.g., 0.(123) = 0.123123123...).

Notice that every integer is a rational number, since a/1 = a, for
any a from Z. Upon reaching Q we have formed a system of num-
bers having closure for the four arithmetical operations of addition,
subtraction, multiplication or division.

2. Fractions

All fractions have three parts: a numerator, a denominator,
and a division symbol. In the simple fraction, the numerator and
the denominator are integers. We say that a

b or a/b is a simple fraction,
where a is the numerator, b is the denominator, or / is the division
symbol.

Rule 1: Division by Zero in a Simple Fraction. The denom-
inator of any fraction cannot have the value zero. If the denominator
of a fraction is zero, the expression is not a legal fraction because it’s
overall value is undefined.

This means 6
0 , −3

0 , 5
2−2 are not legal fractions. Their values are all

undefined, and hence they have no meaning. Once you encounter such
a fraction in a problem, stop. You cannot proceed with the problem.

Rule 2: Zero in the Numerator of Simple Fractions. A
numerator is allowed to take on the value of zero in a fraction. Any
legal fraction (denominator not equal to zero) with a numerator equal
to zero has an overall value of zero.

This means 0
6 , 0

−3 , 5−5
2 all have a fraction value of zero because

the numerators are equal to zero.
Rule 3: One Minus Sign in Simple Fractions. If there is

one minus sign in a simple fraction, the value of the fraction will be
negative.

Example: The minus sign can be in the numerator −3
4 , in the de-

nominator 3
−4 or in front of the fraction −3

4 . The value of the fraction
is −0.75. ⋄

Exercise: Find the value of fractions below.



2. FRACTIONS 10

1) 20
−4 ; 2) 0

5 ; 3) −8
0 .

Answer: 1) -4; 2) 0 (see rule 2); 3) no answer (see rule 1).

Rule 4: More Than One Minus Sign in a Simple Fractions.
If there is an even number of minus signs in a fraction, the value of
the fraction is positive. If there is an odd number of minus signs in a
simple fraction, the value of the fraction is negative.

Example: Find the value of the fraction −4
−13 .

Answer: The answer is 4
13 . ⋄

Example: Find the value of the fraction −−3
−8 .

Answer: The answer is −3
8 . ⋄

Exercise: Find the value of fractions below.

1) (−4)×(−5)
−2 ; 2) −3

−5 ; 3) −8
3×5 .

Answer: 1) -8; 2) 3
5 ; 3) − 8

15 .

Rule 5: The Division Symbol in a Simple Fractions. The
Division Symbol - in a simple fraction tells the reader that the entire
expression above the division symbol is the numerator and must be
treated as if it were one number, and the entire expression below the
division symbol is the denominator and must be treated as if it were
one number.

A fraction written as 6+10
4−7 instructs the reader that the numera-

tor is the entire expression 6 + 10 and that denominator is the entire
expression 4 − 7. The numerator can also be written as 16 and the
denominator can also be written as -3. The division symbol acts sim-
ilar to a parenthesis or a bracket. Since 6+10

4−7 can be written as
16
−3 = −16

3 , it is a simple fraction.

Example: Simplify the fraction 7+2
−8+1 .

Solution: 7+2
−8+1 = 9

−7 = −9
7 . ⋄

Rule 6: Properties of the Number 1.Multiplying any number
by 1 does not change the value of the number. Dividing any number
by 1 does not change the value of the number.

Example: 1) 3 × 1 = 3; 2) 0 × 1 = 0; 3)−7
1 = −7. ⋄
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Rule 7: Different Faces of the Number 1.The number 1 can
take on many forms. 4 - 3 = 1 and 10 - 9 = 1 can be used as a
substitution for the number 1 because they have a value of 1. When
the numerator of a fraction is equivalent to the denominator of a
fraction, the value of the fraction is 1. This only works when you have
a legal fraction; i.e., the denominator does not equal zero. You can
substitute one of these fractions for the numer 1.

Example: 1) −8
−8 = 1; 2) 0

0 is undefined (see rule 1); 3) a
a = 1 as

long as a 6= 0. ⋄
Rule 8: Any Integer Can Be Written as a Fraction.
You can express an integer as a fraction by simply dividing by

1, or you can express any integer as a fraction by simply choosing a
numerator and denominator so that the overall value is equal to the
integer.

Example:
1) 3 = 3

1 = 6
2 ;

2) −7 = −7
1 = −77

11 = 14
−2 ;

3) 0 = 0
2 = 0

100 = 0
−5 . ⋄

Rule 9: Factoring Integers. To factor an integer, simply break
the integer down into a group of numbers whose product equals the
original number. Factors are separated by multiplication signs. Note
that the number 1 is the factor of every number. All factors of a num-
ber can be divided evenly into that number.

Example:
1) Factor the number 3.
Answer: Since 3 × 1 = 3, the factors of 3 are 3 and 1.
2) Factor the number 10.
Answer: Since 10 can be written as 5× 2× 1, the factors of 10 are

10, 5, 2, and 1. The number 10 can be divided by 10, 5, 2, and 1. ⋄
Rule 10: Reducing Fractions. To reduce a simple fraction,

follow the following three steps:

(1) Factor the numerator.
(2) Factor the denominator.
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(3) Find the fraction mix that equals 1.

Example: Reduce 15
6 .

Solution:
1) Rewrite the fraction with the numerator and the denominator

factored:

15

6
=

5 × 3

2 × 3

Note all factors in the numerator and denominator are separated
by multiplication signs.

2) Find the fraction that equals 1.

15

6
=

5 × 3

2 × 3
=

5

2
× 3

3
=

5

2
× 1 =

5

2

We have just illustrated that 15
6 = 5

2 . Although the left side of the
equal sign does not look identical to the right side of the equal sign,
both fractions are equivalent because they have the same value. ⋄

Example:Reduce the fraction 120
180 .

Solution: 120
180 = 12×10

9×10 = 12
9 × 10

10 = 12
9 × 1 = 12

9 = 3×4
3×3 = 4

3 × 3
3 =

4
3 × 1 = 4

3 .

Answer: 120
180 = 4

3 . ⋄

Exercise: Reduce the fractions below.

1) 14
−49 ; 2) −30

240 ; 3) ab2

b3
.

Answer: 1) − 2
7 ; 2) − 1

8 ; 3)a
b
.

Rule 11: Multiplication of Simple Fractions.To multiply two
simple fractions, complete the following steps

(1) Multiply the numerators.
(2) Multiply the denominators.
(3) Reduce the results (See Rule 10).

Example: Multiply 3
7 × 5

6 .

Solution: 3
7 × 5

6 = 3×5
7×6 = 15

42 = 3×5
2×3×7 = 3

3 × 5
2×7 = 1 × 5

14 . ⋄
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Rule 12: Multiplication of a Fraction and an Integer.To
multiply a whole number and a fraction, complete the following steps

(1) Convert the whole number to a fraction ( See Rule 8).
(2) Multiply the numerators.
(3) Multiply the denominators.
(4) Reduce the results (See Rule 10).

Example: 4 × 3
8 = 4

1 × 3
8 = 4×3

1×8 = 4×3
1×2×4 = 4

4 × 3
1×2 = 3

2 . ⋄
Rule 13: Multiplication of Three or More Fraction.To mul-

tiply three or more simple fractions, complete the following three steps

(1) Multiply the numerators.
(2) Multiply the denominators.
(3) Reduce the results (See Rule 10).

Example: 2
3 × 5

6 × 7
15 = 2×5×7

3×6×15 = 170
270 = 2×5×7

3×2×3×3×5 = 2
2 × 5

5 ×
7

3×3×3 = 1 × 1 × 7
27 = 7

27 . ⋄
Rule 14: Division of Fraction.To divide one fraction by a sec-

ond frac- tion, convert the problem to multiplication and multiply the
two fractions.

(1) Change the sign ÷ to × and invert the fraction to the right
of the sign.

(2) Multiply the numerators.
(3) Multiply the denominators.
(4) Reduce the results. (See Rule 10)

Example:1
2 ÷ 3

4 = 1
2 × 4

3 = 1×4
2×3 = 4

6 = 2×2
2×3 = 2

3 . ⋄
Rule 15: Division of a Fraction by an Integer.To divide a

fraction by a whole number, convert the division process to a multi-
plication process, and complete the following steps

(1) Convert the whole number to a fraction.
(2) Change the sign ÷ to × and invert the fraction to the right

of the sign.
(3) Multiply the numerators.
(4) Multiply the denominators.
(5) Reduce the results.
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Example:1
2 ÷ 2 = 1

2 ÷ 2
1 = 1

2 × 1
2 = 1×1

2×2 = 1
4 . ⋄

Rule 16: Division of Three or More Fraction.To divide three
or more fractions, complete the following steps

(1) Change the signs ÷ to × sign and invert the fractions to the
right of the signs.

(2) Multiply the numerators.
(3) Multiply the denominators.
(4) Reduce the results.

Example:3
7 ÷ 4

5 ÷ 5
6 = 3

7 × 5
4 × 6

5 = 3×5×6
7×4×5 = 90

140 = 3×5×2×3
7×2×2×5 =

2
2 × 5

5 × 3×3
7×2 = 1 × 1 × 9

14 = 9
14 ⋄

Rule 17: Building of Fractions.To build a fraction is the re-
verse of reducing the fraction. Instead of searching for the 1 in a
fraction so that you can reduce, you insert a 1 and build.

Example: Create a fraction with 12 in the denominator that is
equivalent to the fraction 2

3 .

Answer: The answer is 8
12 .

Solution: Recall that you can multiply any number by 1 without
changing the value of the number (Rule 6). Then 2

3 = 2
3 × 1.

Recall that 1 has many forms, look for the form of 1 that will
result in a denominator of 12. Since 3 x 4 = 12, use the fraction 4

4 as
1.

Now 2
3 ×1 can be written as 2

3 × 4
4 . Do multiplication without the

reducing of the final fraction: 2
3 × 1 = 2

3 × 4
4 = 2×4

3×4 = 8
12 .

We have created a fraction with a denominator equal to 12 that
is equivalent to the fraction 2

3 . ⋄
Rule 18: Addition.To add fractions, the denominators must be

equal. Complete the following steps to add two fractions.

(1) Build each fraction so that both denominators are equal.
(2) Add the numerators of the fractions.
(3) The denominators will be the denominator of the built-up

fractions.
(4) Reduce the answer.
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Example: Calculate 1
5 + 3

5 .

Answer: The answer is 4
5 .

Solution: 1
5 + 3

5 = 1+3
5 = 4

5 .
The denominators are the same, so you can skip step 1. The de-

nominator of the answer will be 5. Add the numerators for the nu-
merator in the answer: 3 + 1 = 4. The answer is 4

5 . This answer is
already reduced, so you can skip step 4. ⋄

Exercise:Add the fraction below.

(1) 4
15 + 3

15 ;

(2) 7
10 + 3

14 ;

(3) 10
21 + 9

24 .

Answer:(1) 13
15 ; (2) 32

35 ; (3) 143
168 .

Rule 19: Subtraction.To subtract, the denominators must be
equal. You essentially following the same steps as in addition.

(1) Build each fraction so that both denominators are equal.
(2) Combine the numerators according to the operation of sub-

traction or additions.
(3) The denominators will be the denominator of the built-up

fractions.
(4) Reduce the answer.

Example: Calculate 3
5 − 1

5 .

Answer: The answer is 2
5 .

Solution: 3
5 − 1

5 = 3−1
5 = 2

5 .
The denominators are the same, so you can skip step 1. The de-

nominator of the answer will be 5. Subtract the numerators for the
numerator in the answer: 3 − 1 = 2. The answer is 2

5 . This answer is
already reduced, so you can skip step 4. ⋄

Exercise: Calculate:

(1) 4
15 − 3

15 ;

(2) 7
10 − 3

14 ;

(3) 10
21 − 9

24 .



2. FRACTIONS 16

Answer:(1) 1
15 ; (2) 17

35 ; (3) 17
168 .

Rule 20: Order of Operations.Multiplication and division must
be completed before addition and subtraction.

How do you calculate 2 + 3× 7? Is the answer 35 or is the answer
23? According to the rule 2+3×7 = 2+21 = 23 is the correct answer
to the above question.

How do you calculate (2 + 3)× (7− 3)? Is the answer 32, 20 or is
the answer 14? Follow the rule below.

Rule 21: Parenthesis.The parenthesis instruct you to simplify
the expression within the parenthesis before you proceed.

Then (2 + 3) × (7 − 3) = 5 × 4 = 20 is the correct answer to the
above problem.

Rule 22: Group of Parenthesis.If parenthesis are enclosed in
other parenthesis, work from the inside out.

Example: Calculate 3 + {7 − (2 + 3 × 6) + 2 × 5} − 7 + 1.
The expression

(2 + 3 × 6)

is the inner most parenthesis and must be calculated first.

2 + 3 × 6 = 2 + 18 = 20.

The initial expression is now modified to

3 + {7 − 20 + 2 × 5} − 7 + 1.

The next parenthesis to be calculated is

7 − 20 + 2 × 5 = 7 − 20 + 10 = −13 + 10 = −3.

The expression is now reduced to

3 + {−3} − 7 + 1 = 0 − 7 + 1 = −6.

⋄
Rule 24: The Division Symbol Has the Same Role as the

Parenthesis. It instructs you to treat the quantity above the numer-
ator as if it were enclosed in a parenthesis, and to treat the quantity
below the numerator as if it were enclosed in yet another parenthesis.
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Example: Calculate 2+3×4
4×5−3 +

(
7−2×5
4+2

)2
.

Solution. The expression can be written as

2 + 3 × 4

4 × 5 − 3
+

(
7 − 2 × 5

4 + 2

)

×
(

7 − 2 × 5

4 + 2

)

and multiplication must be completed before addition within each
parenthesis.

2+3×4
4×5−3 +

(
7−2×5
4+2

)2
= 2+12

20−3 +
(

7−10
4+2

)2
= 14

17 +
(−3

6

)2
= 14

17 +
(
−1

2

)2
.

Both parenthesis have been simplified. Now perform the multipli-
cation to yield

(

−1

2

)2

=

(

−1

2

)

×
(

−1

2

)

=
1

4
.

The last thing to do is the addition.

14

17
+

1

4
=

14

17
× 4

4
+

1

4
× 17

17
=

56

68
+

17

68
=

73

68
.

⋄
Complex Fractions

A complex fraction is a fraction where the numerator, denomina-
tor, or both contain a fraction.

Example: 3
1
2

is a complex fraction. The numerator is 3 and the

denominator is 1
2 . ⋄

Example:
1
2

3 is a complex fraction. The numerator is 1
2 and the

denominator is 3. ⋄

Example:
1
2
3
5

is a complex fraction. The numerator is 1
2 and the

denominator is 3
5 . ⋄

Rule 25: Manipulation with Complex Fraction.To manipu-
late complex fractions, just convert them to simple fractions and follow
rules 1 through 23 for simple fractions.
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To multiply, add or subtract two complex fractions, convert the
fractions to simple fractions and follow the steps you use to add or
subtract two simple fractions.

Example: Add the fractions 2
3 + 5

4
7

.

Solution: 2
3 + 5

4
7

= 2
3 + 5 ÷ 4

7 = 2
3 + 5

1 × 7
4 = 2

3 + 5×7
4 = 2

3 + 35
4 =

2
3 × 4

4 + 35
4 × 3

3 = 8
12 + 105

12 = 8+105
12 = 113

12 . ⋄
Rule 26: Compound Fractions. To manipulate compound frac-

tions, just convert them to simple fractions and follow rules 1 through
23 for simple fractions. A compound fraction is sometimes called a
mixed number. Recall that 31

2 , 42
5 , −731

32 are examples of compound
fractions.

Example: Convert 31
2 to a simple fraction.

Solution: 31
2 can be written as 3 + 1

2 . Write 3 as the fraction 6
2 .

Now 3 + 1
2 can be written as 6

2 + 1
2 and we get

3
1

2
= 3 +

1

2
=

6

2
+

1

2
=

7

2
.

⋄
Rule 27: Converting Simple Fraction to a Compound

Fraction.To convert a simple fraction to a compound fraction, the
numerator must be larger than the denominator. Separate the whole
number first.

Example: Convert 21
20 to a compound fraction.

Solution: 21
10 = 20+1

10 = 20
10 + 1

10 = 2 + 1
10 = 2 1

10 . ⋄
Rule 28: Manipulation with Compound Fraction.To add,

subtract , multiplay or divide two compound fractions, convert the
fractions to simple fractions and follow the steps you use to for simple
fractions.

Example: Calculate 42
3 + 71

9 .

Solution: 42
3+71

9 = 4+ 2
3+7+ 1

9 = 11+ 2
3× 3

3+ 1
9 = 99

9 + 6
9+ 1

9 = 106
9 .
⋄

Example: Calculate 31
5 × 101

2 .
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Solution: 31
5 × 101

2 = (3 + 1
5) × (10 + 1

2) = (15
5 + 1

5) × (20
10 + 1

2) =
16
5 × 21

2 = 16×21
5×2 = 8×21

5 = 168
5 . ⋄

Rule 29: Converting Decimals to Fractions.Multiplay the
decimal fraction by 1 in a form that will remove the decimal.

Example: Convert 2.3 to a simple fraction.
Solution: 2.3 = 2.3

1 × 10
10 = 2.3×10

1×10 = 23
10 . ⋄

Exercise: Convert the decimals below to a simple fraction and
to a compound number.

(1) 0.00235;
(2) 4.28;
(3) 0.0000255.

Answer: (1) 47
20000 ; (2) 4 7

25 ; (3) 51
2000000 .

Example: Write the infinitely repeating decimal 2.5(17) =
2.5171717 . . . as the quotient of two natural numbers.

Solution: The trick is to obtain multiples of x = 2.5171717. . . so
that they have the same infinite tail, and then subtract these tails,
cancelling them out. So observe that

x = 2.5171717...;
10x = 25.171717...;

100x = 251.71717...;
1000x = 2517.1717...

1000x− 10x = 990x = 2492

x =
2492

990
=

(2 × 1246)

(2 × 495)
=

1246

495
. ⋄

Rule 30: Converting Percentages to Fractions. Recall that
1% = 1

100 = 0.01. To convert a percentage to a fraction, simply convert

1% to 1
100 . To convert a percentage to a decimal, simply convert 1%

to 0.01.

Example: Convert 2% to a fraction.
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Solution: 2% can be written as 2×1% which in turn can be written
as 2× 1

100 . Multiply the two fractions using the multiplication rule to

get 2% = 2 × 1
100 = 2

1 × 1
100 = 2

100 = 1
50 .

⋄

2.1. Problems

Find the value of expressions below.

2.1. 5
6 − 2

6 .

2.2. 5
6 + 1

2 × 2
3

2.3. 24
34 −

(
18
34 − 11

34

)
.

2.4. 118
9 − 67

9 .

Solve equations.

2.5. 3x+ 5 = 3.
2.6. 7 − 4x = 5.
2.7. (x+ 42

7) − 36
7 = 6.

2.8. 9 5
12 − (7 6

12 − y) = 2 3
12 .

2.9. x
6 = 16.

2.10. 180
y = 60.

Find the value of expressions below.

2.11. 9
11 + 1 6

11 .

2.12. 1
16 + 15

16 .

2.13. 36
7 + 15

7 .

2.14. 83
5 + 14

5 .

Calculate the value of expressions below.

2.15. 2
5 + 3

11 .

2.16. 1
4 − 3

16 .

2.17. 3
8 + 2

3 − 1
12 .

2.18. 3
16 −

(
1
4 − 1

12

)
.

2.19. 1
15

(
6
11 + 3

22

)
.

2.20. 3
8 ×

(
211

14 − 31
7

)
.

Find the value of expressions below.

2.21. 32
3 ÷ 11

9 .

2.22. 42
7 ÷ 1 1

11 .
2.23.

(

11
3 −

(
2
5

)2
+ 3 1

75

)

÷ 4
75

2.24.
(

2
9 +

(
1
3

)2
+ 31

3

)

÷ 11
17 .

Find the value of expressions below.
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2.25. 3.6
0.45 .

2.26.
2 2

3

4 1
3

.

2.27.
11
15

3 1
5

.

2.28. 3.2
− 4

5

.

2.29. 1.4×3.6÷0.2−4.2
3
4
÷0.2− 1

4

.

2.30. 3.2×2.3÷0.4−4.4
2
3
× 1

3
+ 5

9

.

2.2. Answers

2.1.3
6 . 2.2.7

6 . 2.3.1
2 . 2.4.41

9 . 2.5.−2
3 . 2.6.1

2 . 2.7.54
7 . 2.8.1

3 .

2.9.96. 2.10.3. 2.11.1 4
11 . 2.12.1. 2.13.54

7 . 2.14.102
5 . 2.15.37

55 .

2.16. 1
16 . 2.17.23

24 . 2.18. 1
48 . 2.19. 1

22 . 2.20.− 3
28 . 2.21.3 3

10 .

2.22.313
14 . 2.23.781

2 . 2.24.52
5 . 2.25.8. 2.26.2

3 . 2.27.11
5 .

2.28.−4. 2.29.51
4 . 2.30.18.

3. Irrational Numbers

The third kind of decimal number is one which has a non-
terminating decimal expansion that does not keep repeating. Such
a number is irrational, that is, it cannot be expressed as the quotient
of two integers.

An example is 3.14159265 . . . .
This is the decimal expansion for the number that we ordinarily

call π which is the quotient of the length of a circle to its diameter.
Other example is

√
2 = 1.41421356 . . . .

Theorem 3.1. There are not rational number r such that r2 = 2.

Proof: Assume the contrary. Then there are positive integers p
and q such that r = p/q and p and q do not have common factors.
This means that p2/q2 = 2, that is p2 = 2q2. Hence the area B = p2

of a square with side length p is twice the area S = q2 of the square
with side length q: B = 2S (look at the figure. 1, a).) Since p and q
do not have common factors, B and S are the smallest squares with
integer side lengths such that B = 2S.

Now move a copy of the smaller square to the upper right hand
corner of the larger square and another one to the lower left corner
(fig. 1, b)). The two squares marked by A in the picture have the
same area A. The square I is intersection of the two copies of the
small square. Observe that the side of the square A is p − q and the
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A

A

B
S

I
p

p q

p

q

q

)a )b

Fig. 1. To proof of the theorem 3.1

side of the square I is 2q−p. Moreover B = 2S+2A−I. Since B = 2S
we have I = 2A. This is impossible, since B and S were the smallest
squares with integer side lengths such that B = 2S. ⋄

4. Real Numbers

Appending the irrational numbers to the rational numbers we
obtain the real numbers R.

In summary: there are three types of real numbers:

(i) terminating decimals,
(ii) non-terminating decimals that repeat,
(iii) non-terminating decimals that do not repeat.

Types (i) and (ii) are rational numbers Q, type (iii) are irrational
numbers R \ Q.

Look at the fig. 2 for classification and inclusion of subsets of the
real number.

4.1. Algebraic Numbers

Observe that
√

2 (the square root of 2) is a solution to the equation
x2 − 2 = 0. A further example is 3

√
5 (the cube root of 5), which is a

solution to the equation x3 − 5 = 0.
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Natural

numbers (N)

Negative

Integers

Zero
Integers (Z)

Noninteger

rational

numbers

Rational

numbers (Q)

Irrational

numbers (I)

Real

numbers (R)

Fig. 2. Subsets of the real numbers: N ⊂ Z ⊂ Q ⊂ R

Any number which is a solution of an equation of the form a0x
n +

a1x
n−1 + · · · + an = 0, where a0, a1, . . . , an are integers, is called an

algebraic number.

Example: Prove that
3
√√

2 + 1 is algebraic.

Solution: Work backwards: if
3
√√

2 + 1, then x3 =
√

2 + 1, which
gives (x3 − 1)2 = 2, which is x6 − 2x3 + 1 = 0. ⋄

4.2. Transcendental Numbers

Are there real numbers which are not algebraic? It wasn’t clear
till the 19th century when it was discovered that there were irrational
numbers which were not algebraic. These irrational numbers are called
transcendental numbers.

It was later shown that numbers like π and e are transcendental.
In fact, in the 19th century George Cantor proved that even though
N and R are both infinite sets, their infinities are in a way "differ-
ent"because they cannot be put into a one-to-one correspondence.

4.3. Geometry of the Real Numbers

Geometrically, each real number can be viewed as a point on a
straight line. We make the convention that we orient the real line with
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Fig. 3. Geometry of the real numbers

0 as the origin, the positive numbers increasing towards the right from
0 and the negative numbers decreasing towards the left of 0, as in the
figure 3.

We append the object +∞ which is larger than any real number,
and the object −∞ which is smaller than any real number. Letting
x ∈ R, we make the following conventions:

(1) (+∞) + (+∞) = +∞.
(2) (−∞) + (−∞) = −∞.
(3) x+ (+∞) = +∞.
(4) x+ (−∞) = −∞.
(5) x× (+∞) = +∞ if x > 0.
(6) x× (−∞) = −∞ if x > 0.
(7) x× (+∞) = −∞ if x < 0.
(8) x× (−∞) = +∞ if x < 0.
(9) x

±∞ = 0.

4.4. Basic Real Number Properties

Let x, y, z be arbitrary elements of the set R of real numbers.
Addition properties.

(1) Addition is closure: x+ y is a unique element of R.
(2) Addition is associative (x+ y) + z = x+ (y + z).
(3) Addition is commutative: x+ y = y + x.
(4) There exists an identity element 0 such that 0+x = x+0 = x.
(5) There exists an inverse element −x such that x+ (−x) = 0.

Multiplication properties.

(1) Multiplication is closure: xy is a unique element of R.
(2) Multiplication is associative (xy)z = x(yz).
(3) Multiplication is commutative: xy = yx.
(4) There exists an identity element 1 such that 1x = x1 = x.
(5) there exists an inverse element 1

x such that x 1
x = 1.
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Combined property – distributivity.

(1) x(y + z) = xy + xz; (x+ y)z = xz + yz.

4.5. Definition of an

Recall that for any a ∈ R and for any n ∈ N the exponent an (a
to the power n) is defined as a product of n factors of a:

an = a× a× · · · × a
︸ ︷︷ ︸

n

.

a is called the base of exponent, and n is exponent or power.
If n = 0, a 6= 0 then by definition a0 = 1; 00 is undefined.

For n a negative integer and a 6= 0 we define an = 1
a

−n
.

Using the definition one can easily verify properties of exponent
listed below.

Exponent properties.

aman = am+n;
(am)n = amn;
(ab)m = ambm;

(
a
b

)m
= am

bm , b 6= 0;

am

an = am−n = 1
an−m , a 6= 0.

Example: Simplify (−x2)−5 × (−x−3)4.
Solution: (−x2)−5 × (−x−3)4 = (−1 × x2)−5 × (−1 × x−3)4 =

(−1)−5 × (x2)−5 × (−1)4 × (x−3)4 = (−1) × (x2)−5 × 1 × (x−3)4 =

(−1) × x2×(−5) × 1 × x(−3)×4 = −x−10 × x−12 = −x−10+(−12) =
−x−22 = − 1

x22 . ⋄

Exercise: Simplify:
(1) (−y7)−8 × (y−6)−9;
(2) (4x−1y2)−2;
(3) (−3m4n−1)3.

Answer: (1) 1
y2 ; (2) x2

2y
; (3) − 27m12

n3 .

Example: Calculate 54157+510272

755 .
Solution: Represent 15 as 15 = 3 × 5, then, according to the

exponent properties 157 = (3 × 5)7 = 37 × 57 and 54 × 157 = 54 ×
37 × 57 = 54 × 57 × 37 = 54+7 × 37 = 511 × 37.
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Similarly 272 = (33)2 = 33×2 = 36, 755 = (52 × 3)5 = (52)5 × 35 =
52×5 × 35 = 510 × 35. Then we have

54157+510272

753 = 511×37+510×36

56×33 = 36510(5×3+1)
510×35 =

= 36−5510−10(5 × 3 + 1) = 31 × 50 × 16 = 3 × 1 × 16 = 48. ⋄

Exercise: Simplify 2731510−99511

459 .

Answer: -10.

4.6. Definition of b
1
n

For any b ∈ R and for any n ∈ N the exponent b
1
n is a number a

such that an = b and:

• If n is even and b is positive then b
1
n represents the positive.

• If n is even and b is negative then b
1
n does not represent any

real number.
• If n is odd then there is exactly one value of b

1
n .

• 0
1
n = 0.

For natural n > 1 and real b we define an n−th root radical n
√
b

by n
√
b = b

1
n . If n = 2 we will write

√
b in place of 2

√
b.

Exercise: Find the value of radical:

(1) 3
√

64,
(2) 4

√
81,

(3) 3

√

−33
8 ,

(4) 5
√

0.00032.

Answer: (1) 4, (2) 3, (3) − 3
2 , (4) 0.2.

Rational Exponent Radical Conversions: For m and n pos-
itive integers (n > 1), and b not negative when n is even,

b
m

n = (bm)
1
n =

n
√
bm = (

n
√
b)m.

Properties of radicals.

(1) n
√
xn = x;

(2) n
√
xy = n

√
x n
√
y;

(3) n

√
x
y =

n
√

x
n
√

y .
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Exercise: Find the value of radical:

(1) 4
√

(−3)4,

(2)
5
√

310,

(3) 3
√

(−3)3,

(4)
9
√

273.

Answer: (1) 3, (2) 9, (3) -3, (4) 3.

4.7. Algebraic Simplification

In the following examples and problems, the term "simpli-
fy"indicates to eliminate compound fractions, factor as much as possi-
ble, reduce to a common denominator when feasible, and avoid nega-
tive exponents. It is useful to remember the following special formulas.

Special Product and Special Factoring Formulas.
(a− b)(a+ b) = a2 − b2

(a+ b)2 = a2 + 2ab+ b2

(a− b)2 = a2 − 2ab+ b2

a3 + b3 = (a+ b)(a2 − ab+ b2)
a3 − b3 = (a− b)(a2 + ab+ b2)

Example: Simplify the expression x2−4xy+3
(x2−4)(x−2)

.

Solution: x2−4xy+3
x2−4

= (x−2)2

(x−2)(x+2)(x−2) = 1
x+2 . ⋄

Exercise: Simplify the expressions:
(1) x+1

x(x+1)2
× (x2 − 1);

(2) x+y
x−y ÷ x2+2xy+y2

(x−y)2
.

Answer: (1) 1 − 1
x
; (2) x−y

x+y
.

4.8. Binomial Theorem

Definition 4.1. For integer n ≥ 0, the factorial symbol n! is
defined by follows:

0! = 1; 1! = 1;

n! = n(n− 1)(n− 2) · · · 1, n ≥ 2.

Example: 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720. ⋄
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Fig. 4. Pascal triangle

Definition 4.2. For integer j, n such that 0 ≤ j ≤ n the symbol(
n
j

)

is defined as

(
n
j

)

= n!
j!(n−j)! .

Example:

(
9
3

)

= 9!
3!(9−3)! = 9!

3!6! = 9×8×7×6!
3×2×1 6! = 9×8×7

3×2×1 = 84. ⋄

Exercise: Evaluate: (1) 5!; (2) 7!; (3)

(
7
5

)

; (4)

(
100
99

)

.

Answer: (1) 120; (2) 5040; (3) 21; (4) 100.

See the Pascal triangle on fig. 4 for calculating

(
n
j

)

.

Theorem 4.1 (Binomial Theorem). For any real numbers x, a
and for any natural n the following formula is true:

(x + a)n =
n∑

j=0

(
n
j

)

xn−jaj =
(n
0
)

xn +
(n
1
)

xn−1a + · · · +

(
n

n− 1

)

xan−1 +
(

n
n
)

an.
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Example: Expand (2y + 5)4 using the Binomial Theorem.

Solution: (2y + 5)4 =
4∑

j=0

(
4
j

)

(2y)n−j5j =

(
4
0

)

(2y)450 +

(
4
1

)

(2y))4−151 +

(
4
2

)

(2y)4−252 +

(
4
3

)

(2y)4−353 +

(
4
4

)

(2y)4−454 =

1 × 16y4 + 4 × 8y3 × 5 + 6 × 4y2 × 25 + 4 × 2y × 125 + 1 × 625 =
16y4 + 160y3 + 600y2 + 1000y + 625. ⋄

Exercise: Expand using the Binomial Theorem:

(1) (a+ b)3; (2) (2x− 3)4.

Answer: (1) a3 +3a2b+3ab2 + b3; (2) 16x4−96x3 +216x2−216x+81.

4.9. Problems

Simplify the expression.
4.1. 22

3x
2y8(−11

2xy
3) ÷ (3xy)2.

4.2. 41
6a

8b5(−11
5a

5b)3 ÷ (6ab)2.
Evaluate.
4.3. 7×183n×23n+1+2×93n×43n+2

324×362n−2 .

4.4. 5×62k+2×22k−3×42k+1×32k

42×122k−2 .

Simplify the expression.
4.5. (

√
14 − 2

√
35) × 1

7

√
7 +

√
20.

4.6. 1 − 0.1
√

5(
√

15 +
√

20).
4.7. (1

3

√
39 − 1

2

√
26) ÷ 1

6

√
13 +

√
18.

4.8. (2
√

38 −
√

57) × 2
19

√
19 +

√
12.

Factorize.

4.9. 9y2 − 6y + 1 − x2.
4.10. y2 − 10y + 25 − 4m2.

4.11. 1000 − a3.
4.12. 27x3 + 8.

Represent as a fraction.
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4.13.
(

m
n − n

m

)2
+

(
m
n + n

m

)2
.

4.14.
(

a
b + 1

)2
+

(
a
b − 1

)2
.

Simplify the expressions.

4.15.
(

x−3
x2−3x+9

− 6x−18
x3+27

)

÷ 5x−15
4x3+108

.

4.16. 5x
x+y ×

(
xy+y2

5x2−5xy
+ xy + y2

)

− y
x−y .

4.17.
(

a+1
2a + 4

a+3 − 2
)

÷ a+1
a−3 − a2−5a+3

2a .

4.18.
(

4(x+3)
x2−3x

+ x
9−x2

)

× x+3
x+6 − 5

x−3 .

4.19. a−5
6−3a + 4(a+1)

a2+4a
÷

(
9a

a2−16
− a+4

a2−4a

)

.

4.10. Answers

4.1.1.5x4y18. 4.2.−0.2a21b6. 4.3.184. 4.4.576.
4.5.

√
2. 4.6.− sqrt3

2 . 4.7.2
√

3. 4.8.4
√

2. 4.9.(3y+x−1)(3y−
x− 1). 4.10.(y − 2m− 5)(y + 2m− 5). 4.11.(10− a)(100 + 10a+

a2). 4.12.(3x+ 2)(9x2 − 18y + 4). 4.13.2(m4+n4)
m2n2 . 4.14.2(a2+b2)

b2
.

4.15.0.8(x− 3). 4.16.5xy. 4.17.2−a
2 . 4.18.− 2

x . 4.19.1
6 .



CHAPTER 2

EQUATIONS AND UNEQUALITIES

1. Concept of Set and Operations

A set is a collection of objects. We denote a set with a capital
roman letter, such as A or B or C. We often will use Greek letters for
denoting elements of sets and a concept of set relation presented in
following two tables and diagram.

Greek Alphabets (Capital letter, small case letter, name)
A, α, alpha B, β, beta Γ, γ, gamma ∆, δ, delta
E, ε, epsilon Z, ζ, zeta H, η, eta Θ, θ, theta
I, ι, iota K, κ, kappa Λ, λ, lambda M , µ, mu
N , ν, nu Ξ, ξ, xi O, ø, omicron Π, π, pi
P , ρ, rho Σ, σ, sigma T , τ , tau Y , υ, upsilon
Φ, ϕ, phi X, χ, chi Ψ, ψ, psi Ω, ω, omega

Example: Let A = {1, 2, 3, 4, 5, 6}, B = {1, 3, 5, 7, 9}.
Then A ∪ B = {1, 2, 3, 4, 5, 6, 7, 9}, A ∩ B = {1, 3, 5}, A \ B =

{2, 4, 6}, B \A = {7, 9}. ⋄

Example: Let A = [−10; 2], B = (−∞; 1).
Then A∪B = (−∞; 2], A∩B = {[−10; 1), A\B = [1; 2], B \A =

(−∞; 10). ⋄

31
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Fig. 1. Set relations

Set Relations
∈ Belongs to, example: α ∈ {1, 2, α, β, a, b}.
/∈ Does not belongs to, example: γ /∈ {1, 2, α, β, a, b}.
⊂ Subset symbol: A ⊂ B means that all elements of the set A

belongs to set B.
∅ Empty set, i.e. a set that does not contain any elements.
∪ Union of two sets. The union A ∪ B is a set containing all

elements from sets A and B.
∩ Intersection of two sets. The intersection A∩B is a set con-

taining all elements that belong to both sets A and B.
\ Difference of two sets. The difference A \B (A setminus B)

is a set containing all elements that belong to the set A and
do not belong to the set B.

Following table lists symbols and quantifiers that are usually used
for abbreviate notation.
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Symbols and Quantifiers
⇒ Follows. S ⇒ T means that if the statements S is true then

also the statement T is true. Example: n ∈ N ⇒ n2 + n is
even.

⇔ Equivalence of statements. S ⇔ T means that statements S
and T are either both true or both false.

∀ For all. Example: ∀x ∈ R : x2 ≥ 0.
∃ There is. Example: ∃n ∈ N : n2 − 6n < 0.
∃! There is a unique. Example: ∃!n ∈ N : n2 − 2n < 0.
∧ And.
∨ Or.
∑

Greek letter Sigma, symbol for summation. Example:
m∑

i=1
i2 = 1 + 4 + 9 + · · · +m2.

(a, b) Open interval from a to b: (a, b) = {x ∈ R| a < x < b}.
[a, b] Closed interval from a to b: [a, b] = {x ∈ R| a ≤ x ≤ b}.

Example: The following statements are true mathematical state-
ments illustrating typical usage of the above symbols.

• ∀n ∈ N : n2 − n is even.
• ∀x > 0 : sin(x) < x.

•
m∑

n=1
n = m(m+1)

2 .

•
m∑

n=1
n2 = m3

3 + n2

2 + n
6 .

⋄

Exercise: Using mathematical notation, write the following state-
ments without using words:

(1) For all negative numbers x, x is smaller than sin(x).
(2) For any positive real number δ, there is a positive rational

number q such that δ smaller than q.

Answer:

(1) ∀x < 0 : x < sin(x).
(2) ∀δ ∈ R, r > 0 ∃q ∈ Q, q > 0: δ < q.
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Fig. 2. Representation of real numbers

Example: Are the following statements true or false:

(1) ∀x ∈ R ∃y ∈ Z : 0 < x
y < 1.

(2) ∃x ∈ R ∀y ∈ Z : 0 < x
y < 1.

(3) ∀ε > 0 ∃δ > 0 : |x− 1| < δ ⇒ |2x− 2| < ε.
(4) ∃ε > 0 ∀δ > 0 : |x− 1| < δ ⇒ ex < ε.

⋄
Answer: (1) false. (2) false. (3) true. (4) false.

Exercise:

(1) Write the definition of the union A∪B of two sets A and B
using the above defined symbols as much as possible.

(2) Write the definition of the intersection A ∩ B of two sets A
and B using the above defined symbols as much as possible.

Answer: (1) x ∈ A ∪ B ⇔ (x ∈ A) ∨ (x ∈ B). (2) x ∈ A ∩ B ⇔ (x ∈
A) ∧ (x ∈ B).

2. Coordinates in One Dimension

We envision the real numbers as laid out on a line, and we locate
real numbers from left to right on this line. If a < b are real numbers
then a will lie to the left of b on this line (see fig 2).

Example: On a real number line, plot the numbers −4,−1, 2, 6.
Also plot the sets S = {x ∈ R : −8 ≤ x < −5} = [−8,−5) and
T = {t ∈ R : 7 < t ≤ 9} = (7, 9]. Label the plots.

Solution: Figure 3 exhibits the indicated points and the two sets.
These sets are called half-open intervals because each set includes one
endpoint and not the other. ⋄
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Fig. 3. Numbers and half-intervals on real axis

Note 2.1. The notation S = {x ∈ R : −8 ≤ x < −5} =
[−8,−5) is called set builder notation. It says that S is the set of all
real numbers x such that x is greater than or equal to −8 and less
than −5.

Definition 2.1. If an interval contains both its endpoints, then
it is called a closed interval. If an interval omits both its endpoints,
then it is called an open interval. See Fig. 4.

3. Equations and Inequalities

Properties of equality.

(1) if a = b then ∀c : a+ c = b+ c.
(2) if a = b then ∀c : a− c = b− c.
(3) if a = b then ∀c : a× c = b× c.
(4) if a = b then ∀c 6= 0 : a÷ c = b÷ c.

Example: Find the set of points that satisfy x− 2 = 4.
Solution: Using the first property we solve the equality to obtain

x− 2 + 2 = 4 + 2 or x = 6. ⋄
Inequality properties.
For a, b, c any real numbers.

(1) if a < b and b < c then a < c.
(2) if a < b then a+ c < b+ c.
(3) if a < b then a− c < b− c.
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[a, b] a £ x £ b [ ]
a b

x Closed

[a, b) a £ x < b
b

[
a

) x Half-open

(a, b] a < x £ b ]
a b

x( Half-open

(a, b) a < x < b
a b

x( ) Open

Interval Inequality

Notation Notation Line Graph Type

Interval Notation

Fig. 4. Interval notation

(4) if a < b and c > 0 then a× c < b× c.
(5) if a < b and c < 0 then a× c > b× c.
(6) if a < b and c > 0 then a÷ c < b÷ c.
(7) if a < b and c < 0 then a÷ c > b÷ c.

Example: Find the set of points that satisfy x−2 < 4 and exhibit
it on a number line.

Solution: We solve the inequality to obtain x < 6. The set of
points satisfying this inequality is exhibited in Fig. 5. ⋄

Exercise: Find the set of points that satisfy the sistem of un-
equalities
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Fig. 5. The solution of unequality x− 2 < 4

{
2x+ 3 > 0;
5 − x ≥ 0.

Answer:− 3
2 < x ≤ 5.

4. Absolute Value. The Distance in the Set of Real
Numbers

Definition 4.1. The absolute value |x| of a number x ∈ R is a
number defined by setting

|x| =

{
x, if x ≥ 0
−x, if x < 0.

Definition 4.2. The distance between two real numbers x, y is
|x− y|.

Properties of absolute value.

(1) |a| ≥ 0;
(2) | − a| = a;
(3) a2 = |a|2;
(4) |ab| = |a||b|;
(5) −|a| ≤ a ≤ |a|;
(6) |a| = |b| ⇔ a = ±b;
(7) b > 0, |a| > b⇔ a > b or a < b;
(8) Tiangle unequality: |a+ b| ≤ |a| + |b|.
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Fig. 6. Absolute value equations and inequalities

Example: Let x, y, z ∈ R. Show that |x− y| ≤ |x− z| + |z − y|.
Proof: |x− y| = |x− z + z − y| ≤ |x− z|+ |z − y| by the triangle

inequality. ⋄

Example: When do we have inequality in the above estimate? ⋄

5. Solving Absolute Value Equation and Inequality

.
See Fig. 6 for scheme of solving the simplest absolute value equa-

tion and unequality.

Example: Solve the equation |2x+ 1| = 5.
Solution: For those value of x for which 2x+ 1 ≥ 0 we have
2x+ 1 = 5 ⇔ 2x = 4 ⇔ x = 2.
If x = 2 then 2x+ 1 = 5 > 0. Hence x = 2 is a solution.
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For those value of x for which 2x+ 1 < 0 we have
|2x+ 1| = 5 ⇔ −(2x+ 1) = 5 ⇔ −2x = 6 ⇔ x = −3.
If x = −3 then 2x+1 = −5 < 0. Hence x = −3 is also a solution.
Conclusion: the equation has two solution: x = 2 and x = −3. ⋄

Example: Solve the unequality |2x+ 1| ≥ 5.
Solution: By the property 6 of absolute values,
|2x+ 1| ≥ 5 ⇔ 2x+ 1 ≥ 5 or 2x+ 1 ≤ −5.
2x+ 1 ≥ 5 ⇔ 2x ≥ 4 ⇔ x ≥ 2.
2x+ 1 ≤ −5 ⇔ 2x ≤ −6 ⇔ x ≤ −3.
Conclusion: solution is x ≥ 2 or x ≤ −3. ⋄

5.1. Problems

Write without absolute value signs.
5.1. |

√
3 − 2|.

5.2. |
√

7 −
√

5|.
5.3. ||

√
7 −

√
5| − |

√
3 − 2||.

5.4. |x− |1 − 2x|| if x > 2.

5.5. |
√

3 −
√

|2 −
√

15|.
Find all the real solution to equations and inequalities below.

5.6. |5x− 2| = |2x+ 1|.
5.7. |x| + |x− 1| = 1.
5.8. ||x| + 1| = 2.

5.9. |x− 2| + |x− 3| = 1.
5.10. |x| + |x− 1| = 2.

5.11. |x+ 1| + |x+ 2| − |x− 3| = 5.

5.12. |x| > 4.
5.13. |x+ 2| ≤ 4.
5.14. |4x+ 5| < 3.
5.15. |2x− 1| ≥ 3.

5.16. |2x− 5| ≤ x.
5.17. |2x− 1| < |3x+ 1|.
5.18. |3x− 2| > |2x+ 1|.
5.19. |3 + x| ≥ |x|.

5.20. 2|x− 3| + |x+ 1| ≤ 3x+ 1.
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5.2. Answers

5.1.2−
√

3. 5.2.
√

7−
√

5. 5.3.
√

7−
√

5−
√

3 + 2. 5.4.x− 1.

5.5.
√

3−
√√

15 − 2. 5.6.{2; 3}. 5.7.{0; 1}. 5.8.{−1; 1}. 5.9.2 ≤
x ≤ 3. 5.10.{−1

2 ; 3
2}. 5.11.{−11; 5

2}. 5.12.x > 4 or x < −4.

5.13.−6 ≤ x ≤ 2. 5.14.−2 < x < −1
2 . 5.15.x ≥ 2 or x ≤ −1.

5.16.5
3 ≤ x ≤ 5. 5.17.x < −2 or 0 < x < 1

2 or x > 2. 5.18.x < −1

or −1
2 < x < 1

5 or x > 10
15 . 5.19.x ≥ −3

2 . 5.20.x ≥ 2.



CHAPTER 3

FUNCTION

1. Coordinates in Two Dimension

Definition 1.1. The real Cartesian Plane R2 is the set of all
ordered pairs (x, y) of real numbers.

We represent the elements of R2 graphically as follows. Intersect
perpendicularly two copies of the real number line. These two lines
are the axes. Their point of intersection which we label O = (0, 0) is
called the origin (see the Fig. 1).

We determine the coordinates of the given point P determining
the x-displacement, or (signed) distance from the y-axis and then
determining the y-displacement, or (signed) distance from the x-axis.
We refer to this coordinate system as (x, y)-coordinates or Cartesian
coordinate system.

xO

y
P

x

y

Fig. 1. Cartesian coordinate system

41
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To each point P on the plane we associate an ordered pair P =
(x, y) of real numbers. Here x is the abscissa (from the Latin linea
abscissa or line cut-off), which measures the horizontal distance of
our point to the origin, and y is the ordinate, which measures the
vertical distance of our point to the origin. The points x and y are
the coordinates of P .

This manner of dividing the plane and labelling its points is called
the Cartesian coordinate system. The horizontal axis is called
the x-axis and the vertical axis is called the y-axis. It is therefore
sufficient to have two numbers x and y to completely characterise the
position of a point P = (x, y) on the plane R2.

Example: Plot the points P = (3,−2), Q = (−4, 6), R =
(2, 5), S = (−5,−3). Solution: Let’s plot the poin P . The first co-
ordinate 3 of the point P tells us that the point is located 3 units to
the right of the y-axis. The second coordinate -2 of the point P tells
us that the point is located 2 units below the x-axis (because -2 is
negative). Plotting of points Q,R, S is similar. See Fig. 2, 3. ⋄

Example: Sketch the region R = {(x, y) ∈ R2 : 1 < x < 3, 2 <
y < 4}.

Solution: The region is a square, excluding its boundary. The
graph is shewn in the Figure 4, where we have dashed the bound-
ary lines in order to represent their exclusion.

⋄

Exercise: Sketch the following regions on the plane.
1) R1 = {(x, y) ∈ R2 : x < 2}.
2) R2 = {(x, y) ∈ R2 : |x| ≥ 3, |y| ≥ 4}.
3) R3 = {(x, y) ∈ R2 : |x| < 2, y > −4}.

2. Definition of Function

Definition 2.1. Given sets A and B. A function f : A→ B is
a rule which assigns an element f(a) of the set B for every a in A.

If the sets A and B are finite, then this rule can be expressed
in terms of a table or a diagram. Usually the sets A and B are not
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Fig. 2. Points P = (3,−2), Q = (−4, 6), R =
(2, 5), S = (−5,−3) on the coordinate plane.

finite. In such a case the rule in question is usually expressed in terms
of an algebraic expression, involving possibly special functions, for
f(a). Alternatively the rule to compute f(a), for a given a, may be a
program taking a as input and producing f(a) as its output.

Definition 2.2. Let f : A → B be a function. The set A is the
domain of definition of the function f . The set B is the target
domain of the function f . The set f(A) = {f(a)| a ∈ A} ⊂ B is the
range of the function f.

Example: Find the natural domain of the rule y = 1
x2−x−6

.
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Quadrant I
x>0, y>0

Quadrant II
x < 0, y > 0

Quadrant III
x < 0, y < 0

Quadrant IV
x > 0, y < 0

Fig. 3. Quadrants of the plane

xO 1 32

1

2

3

4

R

Fig. 4. The region R

Solution: In order for the output to be a real number, the denom-
inator must not vanish. We must have x2˘x− 6 = (x+ 2)(x− 3) 6= 0,
and so x 6= −2 nor x 6= 3. Thus the natural domain of this rule is
R \ {−2, 3}.

Here we used the next rule: if we have an equation ax2+bx+x = 0
and the discriminant D = b2 − 4ax ≥ 0 then the solutions x1, x2 of

the equation are x1 = −b+
√

D
2a , x2 = −b−

√
D

2a and ax2 + bx + x =
a(x− x1)(x− x2). ⋄

We will usually concern a function f : R → R defined in terms of
explicit expression for f(x). The graph of the function f is the set
{(x, f(x))| x ∈ R}.
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x

y

6–6

6

–6

0

(a) y3 – x = 1

(b) y2 – x2 = 9

x

y

3–3

3

–3

0

Fig. 5. Vertical line test for a function: a) is a func-
tion; b) is not a function

Fig. 6. Horizontal line test for a function: left func-
tion is not one-to-one; right function is one-to-one

Vertical line test for a function: An equation defines a func-
tion if each vertical line in the rectangular coordinate system passes
through at most one point on the graph of the equation. If any vertical
line passes through two or more points on the graph of an equation,
then the equation does not define a function.

Definition 2.3. A function f : A→ B is injective or one-to-one
if f(x) = f(y) ⇒ x = y.

A one-to-one function associates at most one point in the set A
to any given point in the set B. Horizontal Line Test: If horizontal
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Fig. 7. Odd and even functions

lines intersect the graph of a function f in at most one point, then f
is one-to-one.

Definition 2.4. A function f : A → B is surjective or onto if
f(A) = B, i.e. ∀y ∈ B∃x ∈ A : f(x) = y.

Definition 2.5. A function f : A → B is bijective if it is both
one-to-one and surjective. For a bijective function ∀y ∈ B∃!x ∈ A :
f(x) = y.

Observe that the property of being surjective or onto depends on
how the set B in the above is defined. Possibly reducing the set B
any mapping f : A→ B can always be made surjective.

Definition 2.6. A function f is even if f(−x) = f(x) for all x,
and odd if f(−x) = −f(x) for all x.

The above definition assumes that the domain of definition of the
function f is symmetric, i.e. that if the function f is defined at a point
x, then it is also defined at the point −x. In most of our applications,
the functions under consideration are defined for all real numbers.

Example: Investigate is a function f : R → R, f(x) = x3

x2+1
even,

odd, or neither.

Solution: f(−x) = (−x)3

(−x)2+1
= − x3

x2+1
= −a(x). Thus the function

f is odd. ⋄
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Exercise: Investigate which of the following functions are even,
odd, or neither.

(1) f(x) = |x|
x2+1

;

(2) f(x) = |x| + 2;
(3) f(x) = |x+ 2|.

Answer:(1) even; (2) even; (3) neither even nor odd.

Theorem 2.1. Let f1, f2 be even functions, and let g1, g2 be odd
functions, all sharing the same common domain.

Then

(1) f1 ± f2 is an even function.
(2) g1 ± g2 is an odd function.
(3) f1 × f2 is an even function.
(4) g1 × g2 is an even function.
(5) f1 × g2 is an odd function.

Proof: We have
1) (f1±f2)(−x) = f1(−x)±f2(−x) = f1(x)±f2(x) = (f1±f2)(x).
2) (g1 ± g2)(−x) = g1(−x) ± g2(−x) = −g1(x) ± g2(x) = −(g1 ±

g2)(x).
3) (f1 × f2)(−x) = f1(−x) × f2(−x) = f1(x) × f2(x) = (f)1 ×

f2)(x).
4) (g1 × g2)(−x) = g1(−x) × g2(−x) = (−g1(x)) × (−g2(x)) =

(g1 × g2)(x).
5) (f1 × g1)(−x) = f1(−x) × g1(−x) = −f1(x) × g1(x) = (f1 ×

g1)(x). ⋄

2.1. Symmetry

A graph is said to be symmetric with respect to the x-axis if
for every point (x, y) on the graph, the point (x,−y) is on the graph.

A graph is said to be symmetric with respect to the y-axis if
for every point (x, y) on the graph, the point (−x, y) is on the graph.
Graph of an even function is symmetric with respect to the y-axis.

o A graph is said to be symmetric with respect to the origin
if for every point (x, y) on the graph, the point (−x,−y) is on the
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y

x

(–a, b ) (a, b )

y

x

(a, –b )

(a, b )

y

x

(–a, –b)

(a, b )

(c) (d)

y

x

(–a, –b)

(a, b )

(a, –b)

(–a, b)

( )a ( )b

Fig. 8. (a): symmetry with respect to the y-axis; (b):
symmetry with respect to the x-axis; (c),(d): symme-
try with respect to the origin
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graph. Graph of an odd function is symmetric with respect to the
origin.

Tests for Symmetry.

x-axis Replace y by −y in the equation. If an equivalent equation
results, the graph is symmetric with respect to the x-axis.

y-axis Replace x by −x in the equation. If an equivalent equation
results, the graph is symmetric with respect to the y-axis.

origin Replace x by −x and y by −y in the equation. If an equiv-
alent equation results, the graph is symmetric with respect
to the origin.

Exercise: Test functions below for symmetry.

(1) y = x2

4−x2 .

(2) x2−1
x3 .

(3) |x|
x4+1

.

(4) |x|x.
(5)

√
x+ 2.

The property of being either odd or even can simplify greatly
computations regarding a given function.

A polynomial is even (odd) if all of its terms have even (odd)
power. Hence every polynomial is a sum of an even polynomial and
an odd polynomial.

Theorem 2.2. Every function is a sum of an even function and
an odd function assuming that the domain of definition of the function
is symmetric.

Proof: Let f be a function. Define the functions f+ and f− be

setting f+(x) = f(x)+f(−x)
2 and f+(x) = f(x)−f(−x)

2 .

f+(−x) = f(−x)+f(−(−x))
2 = f(−x)+f(x)

2 = f(x), i.e. f+ is even.
Similar computation shows that f− is odd. Finally observe that f =
f+ + f−. ⋄
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x

f (x)

5–5

10

–10

f (x) = – x 3

0
x

g(x)

5–5

5

–5

g(x) = 2 x + 2

0

x

h(x)

5–5

5

–5

h(x) = 2

0
x

p(x)

5–5

5

–5

p(x) = x
2

– 1

( )a

( )с

( )b

( )d

Fig. 9. (a) decreasing function; (b) increasing func-
tion; (c) constant function; (d): decreasing for x < 0
and increasing for x > 0.



3. LINEAR POLYNOMIAL FUNCTIONS 51

2.2. Monotonous Functions

Definition 2.7. A function f is increasing if x1 > x2 ⇒ f(x1) >
f(x2).

Definition 2.8. A function f is decreasing if x1 > x2 ⇒ f(x1) <
f(x2).

Definition 2.9. A function f is monotonous if it is either in-
creasing or decreasing.

In some other texts, functions which are increasing in the above
sense, are called strictly increasing. The same applies to the decreasing
functions.

Like in the case of even and odd functions, any sufficiently smooth
function can be expressed as a sum of an increasing function and a
decreasing function. This is a deep fact of analysis.

Observe that monotonous functions are injective or one-to-one but
that there are injective functions which are not monotonous.

3. Linear Polynomial Functions

Graphs of linear polynomials y = ax + b are straight lines. The
coefficient a determines the angle at which the line intersects the
x–axis (slope).

Equation y = b defines a horizontal line, equation x = a defines a
vertical line.

Theorem 3.1. Two lines with slopes m1 and m2 are parallel iff
m1 = m2, and perpendicular iff m1m2 = −1.

See Figure 10 for the geometric interpretation of slope.

Example: Mindplotting y = 2x+ 5. (see Fig. 11).
Step 1: Make a table of friendly values.
Step 2: Plot the points.
Step 3: Draw the straight line throught the points.

⋄
As part of plotting, determine the intercepts, those points where

the graph crosses the axes:
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Rising as x moves Positive
from left to right

Falling as x moves Negative
from left to right

Horizontal 0

Vertical Not defined

Line Slope Graph

Fig. 10. Geometric interpretation of slope
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Fig. 11. Graph of function y = 2x+ 5.

y-intercept: graph crosses the y-axis; x-intercept: graph crosses the
x-axis.

The table in the picture 11 presents x− and y-intercepts of graph
of y = 2x+ 5.

If straight line is defined by equation y = mx+ b then y-intercept
has coordinates (0, b).

In addition to the slope − interseptform y = mx+b of equation
of straight line we will use also

Point-Slope Form: the line through the point (x1, y1) with slope
m has the equation y − y1 = m(x− x1).

3.1. Problems

3.1. Find an equation of the line which passes through the point
(−2, 3) and has slope 3.

3.2. Find an equation of the line which passes through the point
(1,−2) and is parallel to the line y = 5x− 3.

3.3. Find an equation of the line which passes through the point
(2,−4) and has y-intercept 5.
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3.4. Find an equation of the line which passes through the points
(−1,−1) and has x-intercept 3.

3.5. What is the slope of the line x/a+ y/b = 1?
3.6. If the point (a,−a) lies on the line −2x + 3y = 30, find the

value of a.
3.7. Find the equation of the straight line joining (3, 1) and

(−5,−1).
3.8. Find the equation of the straight line parallel to the line

8x− 2y = 6 and passing through the point (5, 6).
3.9. Find the equation of the line passing through (12, 0) and

normal to the line joining (1, 2) and (−3,−1).

3.2. Answers

3.1.y = 3x+ 11. 3.2.y = 5x− 7. 3.3.y = −4.5x+ 5. 3.4.y =
1
4x − 3

4 . 3.5. b
a . 3.6.−6. 3.7.y = 3x − 2. 3.8.y = 4x − 14.

3.9.y = 4
3x+ 16.

4. Power Functions

Definition 4.1. A power function of degree n ia a function of
the form f(x) = axn, where a ∈ R, a 6= 0 and n ∈ N.

Example:(The identity function) Consider the function Id : R →
R such that Id(x) = x. This function assigns to every real its own
value. The graph of identity function is a straight line, and it is given
in figure refidp. ⋄

Example: The next base function is the function y : R → R such
that y(x) = x2. To plot the graph of the function it is convenient to
make a table of values. The table and the graph called parabola are
given in the fig. 13. ⋄

Example: Let’s consider a function y : R → R such that y(x) =
x3. The table of values and the graph of the function called cubic are
given in the fig. 14. ⋄

Propery of power function f(x) = axn, with n is even.
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x

y

0

y=x

Fig. 12. The identity function

Fig. 13. Graph of the function y = x2 (parabola)

(1) The graph is symmetric with respect to the y-axis, so f is
even.

(2) The domain is the set of all real numbers. The range is the
set of nonnegative numbers.

(3) The graph always contains the points (-1,1), (0,0), and (1,1).



5. PIECEWISE DEFINED FUNCTIONS 56

Fig. 14. Graph of the function y = x3 (cubic)

(4) As the exponent increases in magnitude, the graph becomes
more vertical when x < −1 or x > 1, but for x near the
origin the graph tends to flatten out and lie closer to the
x-axis.

Property of power function f(x) = axn, with n is odd.

(1) The graph is symmetric with respect to the origin, so f is
odd.

(2) The domain and range are the set of all real numbers.
(3) The graph always contains the points (−1,−1), (0, 0), and

(1, 1).
(4) As the exponent increases in magnitude, the graph becomes

more vertical when x > 1 or x < −1, but for x near the
origin the graph tends to flatten out and lie closer to the
x-axis.

5. Piecewise Defined Functions

Sometimes it is necessary to define a function by giving sever-
al expressions, for the function, which are valid on certain specified
intervals. Such a function is a piecewise defined function.

The absolute value |x| is an example of a piecewise defined func-
tion. We have |x| = x if x ≥ 0 and |x| = −x otherwise. Computations
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with the absolute value have to be done using its definition as a piece-
wise defined function.

Example: Express y = |1−|x−2|| as a piecewise defined function.
Solution: We have to strip the absolute values from the expression

by starting with the innermost absolute values. Observe first that

y(x) =

{
|1 − (x− 2)| if x ≥ 2,
|1 − (2 − x)| if x < 2, i.e.

y(x) =

{
|3 − x| if x ≥ 2,
|x− 1| if x < 2.

Next observe that

|3 − x| =

{
x− 3 if x ≥ 3,
3 − x if x < 3

and

|x− 1| =

{
x− 1 if x ≥ 1,
1 − x if x < 1.

Combine the above to get

y(x) =







x− 3 if x ≥ 3,
3 − x if 2 ≤ x < 3,
x− 1 if 1 ≤ x ≥ 2,
1 − x if x < 1.

⋄

Exercise: Draw the graph of the above function.

5.1. Problems

Draw the graph of functions.

5.1. y = |2x− 1|.

5.2. y = x+ |x|.

5.3. y = x|x|.

5.4. y = |x− 1| + |x+ 2|.

6. Composite Functions

Function composition is the application of one function to the
results of another. For instance, the functions f : X > Y and g : Y >
Z can be composed by computing the output of g when it has an
argument of f(x) instead of x. Intuitively, if z is a function g of y and
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Fig. 15. g ◦ f , the composition of f and g. For exam-
ple, (g ◦ f)(c) = #.

y is a function f of x, then z is a function of x. Thus one obtains a
composite function g ◦ f : X → Z defined by (g ◦ f)(x) = g(f(x))
for all x ∈ X (see fig. 15). The notation g ◦ f is read as "g circle f or
"g composed with f "g after f "g following f or just "g of f".

Assume that f and g are functions for which the composed func-
tion h = f ◦ g is defined. Then below properties hold.

• If both f and g are increasing, then also h is increasing.
• If f is increasing and g decreasing, then h is decreasing.
• If f is decreasing and g increasing, then h is decreasing.
• If both f and g are decreasing, then h is increasing.

7. Simple Deformations

Let f be a given function, and let a be a real number. The picture
in fig. 16 (a) illustrates how the graph of the function f gets deformed
as we replace the values f(x) by af(x). By multiplying the function by
a positive constant a the graph gets stretched in the vertical direction
if a > 1 and squeezed if 0 < a < 1. By multiplying the function by
a negative constant a the graph gets first reflected about the x-axis
and then stretched in the vertical direction if a < −1 and squeezed if
−1 < a < 0.
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f(x)

0.5f(x)

1.5 f(x)

f(x)

0.5f(x)

1.5 f(x)

f(x)-1.7

f(x)+1.7

( )a ( )b

Fig. 16. Simple deformations

The effect, on the graph, of multiplying a function with a constant
is either stretching, squeezing or, if the constant is negative, then first
reflecting and then stretching or squeezing.

Adding a constant to a function means a vertical translation in
the graph. The The picture in fig. 16 (b) illustrates this situation.

Let f be a given function, and let b > 0 be a real number.
The picture in fig. 17 illustrates how the graph of the function f

gets deformed as we replace the values f(x) by f(x+ b) and f(x+ b).

Example: Using simple deformations of base parabola y = x2,
draw the graph of functions y = x2 + 2; y = x2 − 3; y = −x; y =
(x+ 2)2; y = (x− 3)2; y = 2x2; y = 1

2x
2.

Solution: The answer is shewn in fig. 18, 19. To get the graph of
y = x2 + 2 we should shift the graph of y = x2 up two units. To get
the graph of y = x2 − 3 we should shift the graph of y = x2 down
tree units. To get the graph of y = (x+ 2)2 we should shift the graph
of y = x2 left two units. To get the graph of y = (x − 3)2 we should
shift the graph of y = x2 right three units. ⋄

Example: Show each stage to obtain the graph of function y(x) =
4 − 2(x− 1)4.

Solution is shewn in the fig. 20. ⋄
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f(x)

f(x-b)

F(x+ )b

Fig. 17. Graphs of functions f(x), f(x+ b) and f(x+ b)

Example: Use simple deformation th draw the graph of function:

y = (x− 3)2 + 4; y = −|x+ 1| + 5.

⋄

8. Quadratic Function

8.1. Quadratic Equation

A quadratic equation is an equation equivalent to one of the
form ax2 + bx+ c = 0 where a 6= 0, b, c are real number.

Example: Here are some examples of quadratic equation: x2−9 =
0, x2 + 2x+ 1 = 0, x2 − x+ 1 = 0, −x2 + 2x = 0. ⋄

Methods for Solving Quadratic Equations.

• Factoring.
• Graphing.
• Square Root Method.
• Complete the Square Method.
• Quadratic Formula.
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Fig. 18. Vertical and horizontal shifts
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Fig. 19. Reflection, expansion and contraction

The Square Root Method
If x2 = p and p ≥ 0, then
x =

√
p or x = −√

p

Example: Solve the equation (x+ 1)2 = 5.
Solution: using the square root method

x+ 1 =
√

5 or x+ 1 = −
√

5
x = −1 +

√
5 or x = −1 −

√
5

Answer: x = −1 ±
√

5. ⋄
Quadratic Formula
Consider a quadratic equation ax2 + bx+ c = 0 where a 6= 0. The

number D = b2 − 4ac is called a discriminant.

• If D > 0, there are 2 unequal real solutions.
• If D = 0, there is repeated real solution.
• If D < 0, there are no real solutions.
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Fig. 20. Stage of drawing of graph of y = 4 − 2(x− 1)2

If D ≥ 0, the solutions of the equation are given by formula

x1,2 =
−b±

√
D

2a
and

ax2 + bx+ c = a(x− x1)(x− x2).
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Fig. 21. Graph of the quadratic function

y = ax2 + bx+ c

8.2. Quadratic Function

A quadratic function is a 2nd-degree polynomial function of
the form y = ax2 + bx+ c where a 6= 0, b, c are real number.

The graph of a quadratic function is a parabola, which opens up
if a > 0 and opens down if a < 0 (see fig. 21.

The vertex of parabola is the lowest for a > 0 or highest for a < 0
point.

The x-coordinate of the vertex of the parabola is given by − b
2a ,

and the y-coordinate can be found by substituting this value for x into
the equation y = ax2 + bx+ c.

If the vertex of the parabola has coordinates (h, k), then the equa-
tion of the parabola can be reduced to the form y = a(x− h)2 + k.

Parabola has a symmetry axis at the line x = h.
The x-intercepts of the parabola, if there are any, are the solutions

of the quadratic equation ax2 + bx+ c = 0.

Example: Without graphing, locate the vertex and find the axis
of symmetry of the parabola f(x) = −3x2 +12x+1. Does it open up
or down?

Solution: The vertex locate at point (h, k) where
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h = − b
2a = − 12

2×(−3) = 2,

k = f(2) = −3 × 22 + 12 × 2 + 1 = 13.
The axis of symmetry is x = 2.
Since a = −3 < 0, the parabola is open down. ⋄

Example: Find the vertex of the parabola f(x) = −3x2 +12x+1
by completing the square.

Solution: f(x) = −3x2 + 12x + 1 = −3(x2 − 4x) + 1 = −3(x2 −
4x+ 4 − 4) + 1 = −3

(
(x− 2)2 − 4

)
+ 1 = −3(x− 2)2 + 13. ⋄

Exercise: Find the minimal value of the function f(x) = 2x2 +
2x+ 5.

8.3. Steps for Graphing a Quadratic Function by Hand

(1) Determine the vertex.
(2) Determine the axis of symmetry.
(3) Determine the y-intercept, f(0).
(4) Determine the x-intercepts (if there are any).
(5) If there are no x-intercepts determine another point from the

y-intercept using the axis of symmetry.
(6) Graph.

Exercise: Determine whether the graph opens up or down. Find
its’ vertex, axis of symmetry, y-intercept, x-intercept. Draw the graph.

(1) f(x) = 2x2 + 12x− 5;
(2) f(x) = 2x2 − 8x+ 7;
(3) f(x) = −x2 − 5x+ 9.

8.4. Sign of a Quadratic Function with Application to
Inequalities

Example: Solve the inequality x2 − 2x− 3 > 0.
Solution: First, we need to look at the associated function y =

x2 − 2x − 3 and consider where its graph is above the x-axis (that
is y > 0). To do this, we need to know where the graph crosses the
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Fig. 22. Graph of function y = x2 − 2x− 3 and solu-
tion of inequality x2 − 2x− 3 > 0

x-axis. That is, we first need to find where y = x2 − 2x − 3 is equal
to zero:

x2 − 2x− 3 = 0
(x+ 1)(x˘3) = 0
x = ˘1 or x = 3

This zeroes divide the x−axis into three intervals: (−∞,−1),
(−1, 3), (3,+∞).

Now we need to figure out where (that is, on which intervals) the
graph is above the x-axis. Since the parabola opens up, the graph
is below the x-axis in the middle, and above the x-axis on the ends:
y < 0 if and only if x ∈ (−∞,−1) or x ∈ (3,+∞). So, the solution of
the inequality is x ∈ (−∞,−1) or x ∈ (3,+∞). We can rewrite last
conditions as x < −1 or x > 3.

Answer: x < −1 or x > 3. ⋄

We can apply the concept used in the solution of inequality above
to solve of arbitrary quadratic inequality. In general there are three
following possibilities (see also fig. 23).
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Fig. 23. Sign of a Quadratic Function
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1. The equation ax2 + bx + c has two distinct real roots x1, x2.
Let x1 < x2. In this case, we have ax2 + bx+ c = a(x− x1)(x− x2).
Since (x − x1)(x − x2) is always positive when x < x1 and x > x2

and always negative when x1 < x < x2, we get ax2 + bx + c has the
same sign as the coefficient a when x < x1 and x > x2 and the
opposite sign as the coefficient a when x1 < x < x2.

2. The equation ax2 + bx+ c has double root. In this case ax2 +
bx+ c = a(x+ b

2a)2, and the expression ax2 + bx+ c equal to zero if

x = − b
2a and has the same sign as the coefficient a for any x 6= − b

2a .

3. The equation ax2 + bx + c has no real roots. In this case the
expression ax2 + bx+ c has the same sign as the coefficient a for any
x.

8.5. Problems

Solve inequalities.

8.1. x2 > 0.
8.2. x2 ≤ 4.
8.3. x2 > −4.
8.4. x2 − 2x ≥ 0.
8.5. x2 > −2x.
8.6. x2 − 6x− 7 < 0.

8.7. x2 − 3x+ 5 ≥ 0.
8.8. −5x2 + 10x− 5 < 0.
8.9. x2 + 4x+ 4 ≥ 0.
8.10. −2x2 − x+ 1 < 0.
8.11. −3x2 + 2x+ 1 < 0.

8.6. Answers

8.1.x 6= 0. 8.2.−2 ≤ x ≤ 2. 8.3. any real number. 8.4.x ≤ 0
or x ≥ 2. 8.5.x < −2 or x > 0. 8.6.−1 < x < 7. 8.7. no solution.
8.8. any real number. 8.9.x < −1 or x > 1

2 . 8.10.−1
3 < x < 1.

9. Polynomial Function

Definition 9.1. A polynomial function (or simply polynomial) is
a function of the form P (x) = a0x

n +a1x
n−1 + · · ·+an−1x+an where

a0, a1, . . . an are real numbers, a0 6= 0, and n is a natural number.
Number n is called the degree of polynomial function.

Domain of the polynomial function is all real numbers.
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Exercise: Determine which of the following are polynomials. For
those that are, state the degree.

(1) f(x) = 3x2 − 4x+ 5;
(2) f(x) = 3

√
x− 5;

(3) f(x) = 3x5

5−2x .

Answer: (1) polynomial of degree 3; (2), (3) not a polynomial.

A number x for which P (x) = 0 is called a root of the polyno-
mial P .

Theorem 9.1. A polynomial of degree n has at most n real roots.
Polynomials may have no real roots, but a polynomial of an odd degree
has always at least one real root.

9.1. Polynomial Equation. Division Algorithm for Poly-
nomials

The main tools for finging roots of polinomial of degree greater
then 2 is a Rational Zeros Theorem, Factor Theorem and polynomial
division described below.

Theorem 9.2 (Rational Zeros Theorem). Let P (x) = a0x
n +

a1x
n−1 + · · · + an−1x + an is a polynomial function of power 1 or

greater such that every coefficient ai is an integer. If p/q in the lowest
terms, is a rational zero of f , then p must be a factor of a0 and q
must be a factor of an.

Example: Find the roots of equation x3 − 2x2 − x+ 2.
Solution: The equation has at most three roots.
Factors of 2 are ±1,±2; factors of 1 are ±1, then the possible root

of the equation is among the numbers ±1,±2.
By direct sunstitution one can check that −1, 1 and 2 are roots of

the equation. ⋄

Theorem 9.3 (Factor Theorem). Let P (x) be a polynomial. Then
P (c) = 0 if and only if (x− c) is a factor of P (x).
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Fig. 24. PolynomialDivision

Theorem 9.4. If f(x) and g(x) denote polynomial functions and
if g(x) is not the zero polynomial, then there are unique polynomial
functions q(x) and r(x) such that

f(x)

g(x)
= q(x) +

r(x)

g(x)
, or

f(x) = q(x)g(x) + r(x),

where r(x) is either the zero polynomial or a polynomial of degree
less than that of g(x).

The algorithm of obtaining functions q(x) and r(x) is shewn in
the fig. 24

Example: Solve x5 + x4 − 9x3 − x2 + 20x− 12 = 0.
Solution: The potentional roots are among the numbers

±1,±2,±3,±4,±6,±12. By direct substitution one can get that 1
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is a root. Then by factor theorem x − 1 is a divisor of P (x) =
x5 +x4 − 9x3 −x2 +20x− 12. Divide P (x) by x+3 to obtain P (x) =
x5+x4−9x3−x2+20x−12 = (x−1)(x5+x4−9x3−x2+20x−12). Now
let’s try to find roots of Q(x) = x5 +x4−9x3−x2 +20x−12. The po-
tentional roots are among the numbers ±1,±2,±3,±4,±6,±12. By
direct substitution one can get that 2 is a root. Divide Q(x) by x−2 to
obtain Q(x) = x5+x4−9x3−x2+20x−12 = (x−2)(x3+4x2+x−6)
and P (x) = (x−1)Q(x) = (x−1)(x−2)(x3+4x2+x−6). Similarly, 1
is a root of x3 +4x2 +x−6 and one can get P (x) = (x−1)(x−2)(x−
1)(x2+5x+6) and, finally, P (x) = (x−1)(x−2)(x−1)(x+2)(x+3) =
(x− 1)2(x− 2)(x+ 2)(x+ 3).

Answer: the roots are 1, 2,−2,−3. ⋄

9.2. Graph of Polynomial

The properties of graph of polynomial function are listed in fol-
lowing propositions.

Definition 9.2. If (x − r)m is a factor of polynomial P (x) and
(x−r)m+1 is not a factor of P (x) then r is called a zero of multiplicity
r of P (x).

Example: Let P (x) = (x − 1)2(x − 2)(x + 3)5. Then 1 is a zero
of multiplicity 2, 2 is a zero of multiplicity 1, and −3 is a zero of
multiplicity 5. ⋄

Proposition 9.1. If r is a zero of even multiplicity, then sign of
P (x) does not change from one side to the other side of r, and the
graph touches x-axis at r.

Proposition 9.2. If r is a zero of odd multiplicity, then sign
of P (x) changes from one side to the other side of r, and the graph
crosses x-axis at r.

Proposition 9.3. If P (x) is a polynomial function of degree n,
then P (x) has at most n− 1 turning points.

Note 9.1. For large positive and for small negative values of x
the graph of the polynomial P (x) = a0x

n + a1x
n−1 + · · ·+ an−1x+ an

resembles the graph of the power function f(x) = a0x
n.
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Fig. 25. The graph of polynomial

P (x) = (x+ 1)2(x− 5)(x+ 4)

Steps for graphing a polynomial.

(1) Find the x- and y-intercepts.
(2) Determine whether the graph crosses or touches the x-axis

at each x-intercept.
(3) Determine the maximum number of turning points on the

graph of P .
(4) Use the x-intercepts and test numbers to find the intervals

on which the graph is above the x-axis and the intervals on
which the graph is below the x-axis.

(5) Find the power function that the graph of P resembles for
large values of x.

(6) Put all the information together, and connect the points with
a smooth, continuous curve to obtain the graph.

Example: Draw the graph of P (x) = (x+ 1)2(x− 5)(x+ 4).

(1) x-intercepts are x = −1, x = 5, x = −4;
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y-intercept is y = P (0) = (0 + 1)2(0 − 5)(0 + 4) = −20.
(2) at x = −1 the graph touches, at x = 5, x = −4 the graph

crosses the x-axis.
(3) the maximum number of turning points is 3.
(4) zeroes x = −1, x = 5, x = −4 cut the x-axis into four regions:

(−∞, -4) the test point x = −100: P (−100) > 0 ⇒ the graph is above
the x-axis for any x from this interval;

(-4,-1) the test point x = −3: P (−3) < 0;
(-1,5) the test point x = 0: P (0) < 0;

(5,+∞) the test point x = 100: P (100) > 0.
(5) for large values of x the graph resembles the graph of y = x4.
(6) See the graph at the fig. 25.

⋄

9.3. Key Steps in Solving Polynomial Inequalities

Step 1. Write the polynomial inequality in standard form (a form
where the right-hand side is 0.)

Step 2. Find all real zeros of the polynomial (the left side of the
standard form.)

Step 3. Plot the real zeros on a number line, dividing the number
line into intervals.

Step 4. Choose a test number (that is easy to compute with) in
each interval, and evaluate the polynomial for each number (a small
table is useful.)

Step 5. Use the results of step 4 to construct a sign chart, showing
the sign of the polynomial in each interval.

Step 6. From the sign chart, write down the solution of the original
polynomial inequality (and draw the graph, if required.)

Example: Solve x3 − x2 − 6x > 0.
Solution: Factoring gives

x(x2 − x− 6) > 0 or

x(x− 3)(x+ 2) > 0
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Fig. 26. Solution of x3 − x2 − 6x > 0

. Mark 0,3, and -2 on a number line and use the test point x = 1 for
which x(x− 3)(x+ 2) = −6 < 0. Since the multiplicity of every zero
is odd, we get the sign chart shown in the fig. 26.

Therefore the solution is given by −2 < x < 0 or x > 3.
⋄

9.4. Problems

Solve inequalities.
9.1. x3 − x2 > 0.
9.2. (x− 1)(x2 − 4) ≤ 0.
9.3. (x2 − 9)(x+ 1)(x2 + x+ 1) > 0.
9.4. (x− 5)(x+ 4)(x2 + 6x+ 9) ≥ 0.
9.5. x3 − 5x2 − 22x+ 56 ≥ 0.

9.5. Answers

9.1.x > 1. 9.2.x ≤ −2 or 1 ≤ x ≤ 2. 9.3.3 < x < −1 or x > 3.
9.4.x ≤ −4, x = −3 or x ≥ 5. 9.5.−4 ≤ x ≤ 2 or x ≥ 7.

10. Rational Inequalities

Definition 10.1. A rational function is a finction of form f(x) =
P (x)
Q(x) where P (x), Q(x) are polynomials.

Step 1. Write the inequality in one of the standard form
f(x) > 0, f(x) < 0, f(x) ≥ 0, f(x) ≤ 0,
where f(x) is written as a single quotient.



10. RATIONAL INEQUALITIES 75

Fig. 27. Solution of x3 − x2 − 6x > 0

Step 2. Determine the numbers at which the function f equals
zero and also those numbers at which it is undefined.

Step 3. Use these numbers to separate the real line into intervals.
Step 4. Choose a test number (that is easy to compute with) in

each interval, and evaluate the function f for each number (a small
table is useful.)

Step 5. Use the results of step 4 to construct a sign chart, showing
the sign of the function f in each interval.

Step 6. From the sign chart, write down the solution of the orig-
inal inequality. If the inequality is not strict, include the solutions of
f(x) = 0 in the solution set, but do not include those where f is
undefined.

Example: Solve x2−5x−4
x2−4

≤ 0.
Solution: Factoring gives

(x− 4)(x− 1)

(x− 2)(x+ 2)
≤ 0.

Mark -2, 1,2 and 4 on a number line and use the test point x = 0

for which (x−4)(x−1)
(x−2)(x+2) = −1 < 0. Since the multiplicity of every zero of

numerator and denominator is odd, we get the sign chart shown in
the fig. 27.

Since the inequality is not strict, we can include the zeros of the
numerator; so the solution is given by −2 < x ≤ 1 or 2 < x ≤ 4.

⋄
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10.1. Problems

Solve the inequalities.

10.1. x4+x2+1
x2−4x−5

< 0.

10.2. x3−x2+x−1
x+8 ≤ 0.

10.3. x2−5x+7
−2x2+3x+2

≥ 0.

10.4. x6+3x4−x2−3
x3−64x

< 0.

10.5. 1
2−x + 5

2+x < 1.

10.6. x
x−5 >

1
2 .

10.7. 5x+8
4−x < 2.

10.8. 1
x+2 <

3
x−3 .

10.2. Answers

10.1.−1 < x < 5. 10.2.−8 < x ≤ 1. 10.3.−1
2 < x < 2.

10.4.x < −8 or −1 < x < 0 or 1 < x < 8. 10.5.−2 < x < 2.
10.6.x < −5 or x > 5. 10.7.0 < x < 4. 10.8.−9

2 < x < −2 or
x > 3.

11. Exponential Function

Definition 11.1. An exponential function is a function of the
form

f(x) = ax

where a is a positive real number (a > 0) and a 6= 1. The domain of
f is the set of all real numbers.

Summary of the characteristics of the graph of
f(x) = ax, a > 1

• The domain is all real numbers. Range is set of positive num-
bers.

• No x-intercepts; y-intercept is 1.
• The x-axis (y=0) is a horizontal asymptote as x→ −∞.
• f(x) = ax, a>1, is an increasing function and is one-to-one.
• The graph contains the points (0,1); (1,a), and (-1, 1/a).
• The graph is smooth continuous with no corners or gaps.
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Fig. 28. Graph of the exponential function

Summary of the characteristics of the graph of
f(x) = ax, 0 < a < 1

• The domain is all real numbers. Range is set of positive num-
bers.

• No x-intercepts; y-intercept is 1.
• The x-axis (y=0) is a horizontal asymptote as x→ +∞.
• f(x) = ax, 0 < a < 1, is a decreasing function and is one-

to-one.
• The graph contains the points (0,1); (1,a), and (-1, 1/a).
• The graph is smooth continuous with no corners or gaps.

Exercise: Graph f(x) = 3−x+2 and determine the domain, range
and horizontal asymptote of f .

Answer:

Graph: see figure 29
Domain: all real numbers
Range: {y|y > 2} or (2,+∞)
Horizontal Asymptote: y = 2.
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Fig. 29. Graph of the function f(x) = 3−x + 2

11.1. The Number e

From the picture it appears obvious that, as the parameter a
grows, also the slope of the tangent, at x = 0, of the graph of the
function ax grows.

Definition 11.2. The mathematical constant e is defined as the
unique number e for which the slope of the tangent1 of the graph of ex

at x = 0 is 1.

e ≈ 2.718281828.

The number e is defined also as the number that the expression
(

1 +
1

n

)n

approaches as n→ ∞.

1The slope of a tangent line is the tangent of the angle at which the tangent
line intersects the x-axis.
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Fig. 30. Different exponential functions

In calculus this expression is expressed using limit notation as

lim
n→∞

(

1 +
1

n

)

= e.

Exponent properties

(1) For n a positive integer: an = a · a · · · · · a — n factors of a.
(2) For n = 0: a0 = 1, a 6= 0; 00 is not defined.
(3) For n a negative integer: an = 1

a−n , a 6= 0.

(4) aman = am+n.
(5) (an)m = amn.
(6) (ab)m = ambm.
(7)

(
a
b

)m
= am

bm , b 6= 0.

(8) am

an = am−n = 1
an−m , a 6= 0.

Example: Solve 4x−2 = 64.
Solution:

4x−2 = 64
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Fig. 31. Constant e

4x−2 = 43

x− 2 = 3
x = 5.

Answer: x = 5. ⋄

Example: Solve 9x + 3x+2 − 10 = 0.
Solution:

9x + 3x+2 − 10 = 0

(3x)2 + 323x − 10 = 0

(3x)2 + 323x − 10 = 0 − equation of quadratic type

(3x + 10)(3x − 1) = 0

3x = −10 or 3x = 1

No solution or Solution x = 0.

Answer: x = 0. ⋄

Example: Solve 3x+1 = 22x−1.
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Solution:
3x+1 = 22x−1

ln 3x+1 = ln 22x−1

(x+ 1)ln 3 = (2x− 1)ln 2

xln 3 + ln 3 = 2xln 2 − ln 2

xln 3 − 2xln 2 = −ln 3 − ln 2

x(ln 3 − 2ln 2) = −(ln 3 + ln 2)

x =
−(ln 3 + ln 2)

ln 3 − 2ln 2
= − ln 6

ln 3 − ln 4
= − ln 6

ln(3/4)
∼= 6.23.

Answer: x = − ln 6
ln(3/4)

∼= 6.23. ⋄

Exercise: Solve 32x+1 = 81.

Answer: x = 3
2 .

11.2. Problems

Solve equation.

11.1. 10x = 0.00001.
11.2.

(
1
8

)x
= 64.

11.3. 7x = 1
3
√

49
.

11.4. 1x = 12.
11.5.

(
2
3

)x
= 1.5.

11.6.
(

2
5

)x
= 61

4 .
11.7. 12x = 1.
11.8. 3x = 3

√
9.

11.9. 0.2x =
√

0.008.

11.10. 10x = 4.
11.11. 0.5x−2 = 0.25.
11.12. 36−x = 6.
11.13. 6x2−1 = 1.
11.14. 16x−0.5 = 3214−x.
11.15. 5x × 2x = 0.001.
11.16. (

√
7)x−1(

√
2)x−1 = 1.

11.17. 2x + 2x+2 = 20.
11.18. 4x−1 +4x +4x+1 = 84.

Solve inequality.

11.19. 5x < 125.
11.20. 4x > 256.
11.21. 10x > 0.01.
11.22. 2x < 1

64 .
11.23. 0.3x < 0.09.

11.24. 0.3x > 111
9 .

11.25.
(

1
5

)x
> 3

√
1
25 .

11.26. 3x > 1√
3
.

11.27.
(

2
3

)3x
<

(
3
2

)5
.
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11.28. 25−x < 5
√

5. 11.29. (
√

3)x × 3 > 1
27 .

11.30. 27x31−x < 1
3 .

12. Logarithmic Functions

Definition 12.1. The logarithmic function to the base a,
where a > 0 and a 6= 1, is denoted by y = logax and is defined
by

y = logax if and only if x = ay.

The domain of the logarithmic function y = logax, is x > 0.

Exercise: Change exponential expression into an equivalent log-
arithmic expression.

Answer:

a7 = z means logaZ = 7

102 = 100 means log10100 = 2.

Exercise: Change logarithmic expression into an equivalent ex-
ponential expression.

Answer:

y = log37 means 3y = 7

7 = log3a means 37 = a.

Domain of logarithmic function = Range of exponential function
=(0,∞).

Range of logarithmic function = Domain of exponential function
= (−∞,∞).

Properties of the Graph of a Logarithmic Function
f(x) = logax

• The x-intercept of the graph is 1. There is no y-intercept.
• The y-axis is a vertical asymptote of the graph.
• A logarithmic function is decreasing if 0 < a < 1 and in-

creasing if a > 1.
• The graph is smooth and continuous, with no corners or gaps.

Definition 12.2. The Natural Logarithm y = ln x if and
only if x = ey.
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Fig. 32. Graph of the logarithmic function

Fig. 33. Logarithmic Function with Base 2
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Fig. 34. Graph of the function f(x) = ln (x− 3)

Exercise: Graph f(x) = ln (x − 3). Determinate the domain,
range and vertical asymptote.

Answer:

Graph: see figure 34
Domain: (3,∞) or x > 3
Range: All reals
Vertical Asymptote: x = 3.

Definition 12.3. The Common Logarithmic Function
(base=10) y = lg x = log x if and only if x = 10y.

Properties of Logarithms

(1) loga1 = 0
(2) logaa = 1
(3) logaa

r = r
(4) alogar = r
(5) loga(bc) = logab+ logac
(6) loga

b
c = logab− logac
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(7) logab
c = clogab

Exercise: Write the expression loga

√
xy

z3(y−1)
as sum and (or) dif-

ference of logarithms. Express all powers as factors.

Answer: loga

√
xy

z3(y−1) = loga
√
xy − loga(z3(y − 1)) = 1

2 loga(xy) −
(logaz

3 + loga(y − 1)) = 1
2 (logax + logay) − 3logaz − loga(y − 1) =

1
2 logax+ 1

2 logay − 3logaz − loga(y − 1).

Answer: loga

√
xy

z3(y−1) = 1
2 logax+ 1

2 logay − 3logaz − loga(y − 1).

Exercise: Write the expression 3ln x− 2ln (y+ 1)− 0.5ln z as a
single logarithm.

Answer: 3ln x− 2ln (y+1)− 0.5ln z = 3ln x− 2ln (y+1)− 0.5ln z =

ln x3 − ln (y + 1)2 − ln z0.5 = ln x3

(y+1)2 − ln
√
z = ln x3

(y+1)2
√

z
.

Answer: 3ln x− 2ln (y + 1) − 0.5ln z = ln x3

(y+1)2
√

z
.

Change-of-Base Formula

If a 6= 1, b 6= 1 and c are positive real numbers, then

logac =
logbc

logba

For computation we use:

logac =
log c

log a
=
ln c

ln a

Example: log734 = log34
log7 ≈ 1.81. ⋄

In the following properties a, b, c are positive real numbers, with
a 6= 1.

If b = c, then logab = logac.

If logab = logac, then b = c.
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12.1. Logarithmic and Exponential Equations

Exercise: Solve log3(2x+ 5) = 2.

Answer:

log3(2x+ 5) = 2

Rewrite in exponential form:

32 = 2x+ 5

9 = 2x+ 5

4 = 2x

x = 2.

Answer: x = 2.

Exercise: Solve log4(3x− 5) = 2.

Answer:

log4(3x− 2) = 2

Rewrite in exponential form:

42 = 3x− 2

16 = 3x− 2

18 = 3x

x = 6.

Answer: x = 6.

Exercise: Solve log6(x+ 3) + log6(x− 2) = 1.

Answer:

log6(x+ 3) + log6(x− 2) = 1

log6[(x+ 3)(x− 2)] = 1

log6(x
2 + x− 6) = 1

x2 + x− 6 = 6

x2 + x− 12 = 0

(x+ 3)(x− 3) = 0.

x = −4 or x = 3.

Check!

Check: x = −4
log6(−4 + 3) + log6(−4 − 2) = log6(−1) + log6(−6)
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Both terms are undefined.
Check: x = 3
log6(3 + 3) + log6(3 − 2) = log6(6) + log6(1) = 1
Answer: x = 3.

12.2. Problems

Find the domain of functions.

12.1. y = lg(−x).
12.2. y = lnx2.

12.3. lg(|x| − x).

12.4. 10
1

logx 10 .

Solve equations.
12.5. lg(x+ 1.5) = − lg x.

12.6. log2(9−2x)
3−x = 1

12.7. log4(x+ 3) − log4(x− 1) = 2 − log4 8.
12.8. log5(x− 2) + log√5(x− 2) + log0.2(x− 2) = 4.

12.9. lg(5 − x) − 1
3 lg(35 − x3) = 0.

Solve inequalities.
12.10. log5(3x− 1) < 1.
12.11. log0.2(4 − 2x) > −1.
12.12. log0.4(2x− 5) > log0.4(x+ 1).
12.13. log4(3x− 1) < log4(2x+ 3).
12.14. log 1

2
(x2 − 5x+ 6) > −1.

12.15. log3
2−2x

x ≥ −1.

12.16. log3(x+ 2)(x+ 4) + log 1
3
(x+ 2) < 1

2 log
√

37.

12.17. logx−1
1
2 >

1
2 .



CHAPTER 4

TRIGONOMETRY

1. Angles and Their Measure

A ray, or half-line, is that portion of a line that starts at a point
V on the line and extends indefinitely in one direction. The starting
point V of a ray is called its vertex. If two lines are drawn with a
common vertex, they form an angle. One of the rays of an angle is
called the initial side and the other the terminal side (see fig. 1).

An angle θ is said to be in standard position if its vertex is
in the origin of a rectangular coordinate system and the initial side
coincides with the x-axis (see fig. 1).

When an angle θ is in standard position, the terminal side either
will lie in a quadrant, in which case we say θ lies in that quadrant,
or it will lie on the x-axis or the y-axis, in which case we say θ is a
quadrant angle.

Angles are commonly measured in either

• degrees
• radians

The angle formed by rotating the initial side exactly once in the
counterclockwise direction until it coincides with itself (1 revolution)
is said to measure 360 degrees, abbreviated 360◦ (see fig. 2). One
degree, 1◦, is 1

360 revolution.

A right angle is an angle of 90◦ or 1
4 revolution. A straight

angle is an angle of 180◦ or 1
2 revolution.

One minute, denoted 1′, is defined as 1
60 degree. One second, de-

noted 1′′, is defined as 1
60 minute.

88
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Fig. 1. Positive angle, negative angle, angle in stan-
dard position

Example: Convert 30◦12′55′′ to a decimal in degrees.
30◦12′55′′ = 30◦ + 12 × 1

60 + 55 × 1
3600 = 30◦ + 0.2◦ + 0.01528◦ =

30, 21528◦. ⋄

Example: Convert 45.413◦ to D◦M ′S′′ form.
45.413◦ = 45◦ + 0.413◦ 60′

1◦ = 45◦ + 24.78′ = 45◦ + 24′ + 0.78′ 60
′′

1′ =
45◦ + 24′ + 46.8′′ = 45◦24′47′′. ⋄

Consider a circle of radius r. Construct an angle whose vertex is
at the center of this circle, called the central angle, and whose rays
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Fig. 2. Angles of (a) 360◦ or 2π radians, (b) 90◦ or π
2

radians, (c) 180◦ or π radians

Fig. 3. Angle of 1 radian

subtend an arc on the circle whose length is r (see fig. 3). The measure
of such an angle is 1 radian.

For a circle of radius r, a central angle of θ radians subtends an
arc whose length is rθ.

Then 360◦ = 2π radians, 180◦ = π radians, 1◦ = π
180 radians and

1 radian =
(

180
π

)◦
.
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Fig. 4. Definition of trigonometric functions

Example: Convert 135◦ to radians.
135◦ = 135◦ π

180◦ = 3π
4 radians. ⋄

Example: Convert −2π
3 to degrees.

−2π
3 = 2π

3 × 180◦

π = −120◦. ⋄

2. Trigonometric Function

The unit circle is a circle whose radius is 1 and whose center is at
the origin.

Let θ be an angle in right position and P = (a, b) be the point of
intersection of the terminal side of t and the unit circle (see fig. 4).

The cosine function associates with θ is the x-coordinate of P
and is denoted by

a = cos θ

. The sine function associates with θ is the y-coordinate of P and
is denoted by

b = sin θ

.
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If a 6= 0, then the tangent function is

tan θ =
sin θ

cos θ
=
b

a
.

From considering a right triangle with vertex at the points O =
(0, 0), P = (a, b) and (a, 0) and applying the Pythagorean theorem to
its sides, one can get the Pythagorean Identity:

sin2 θ + cos2 θ = 1.

Example: Find cos θ, tanθ if sin θ = 2
5 and π

2 < θ < π.

Solution: by Pythagorean Identity sin2 θ + cos2 θ = 1, then

cos2 θ = 1 − sin2 θ = 1 −
(

2
5

)2
= 9

25 . So cos θ equals either 3
5 or −3

5 .

Since π
2 < θ < π we assume that cos θ = −3

5 . Now tan θ = sin θ
cos θ = −2

3 .
⋄

Exercise: Find tan θ if cosθ = 24
25 and θ is in Quadrant 3.

Answer: − 7
24 .

In additional to sine, cosine and tangent function we will use three
functions defined below.

Cosecant: csc θ = 1
sin θ ;

secant: sec θ = 1
cos θ ;

cotangent: cot θ = 1
tan θ .

2.1. Trigonometrical Functions of Right Triangle

Given a right triangle with one of the angles named θ in standard
position, and the sides of the triangle relative to θ named opposite,
adjacent, and hypotenuse (see fig. 5), we define the six trigonometrical
functions to be:

(1) sine: sin θ = opposite
hypotenuse = y

r ;

(2) cosine: cos θ = adjacent
hypotenuse = x

r ;

(3) tangent: tan θ = opposite
adjacent = y

x ;

(4) cosecant: csc θ = 1
sinθ = r

y ;

(5) secant: sec θ = 1
cosθ = r

x ;

(6) cotangent: cot θ = 1
tanθ = x

y .
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Fig. 5. Defining of trigonometrical function of right triangle

Fig. 6. Finding of trigonometrical function for 0◦ and 90◦

Exercise: Find the six trigonometric function of an angle θ of
right triangle on the fig. 5, if sides of the triangle are 3 and 2.

2.2. Trigonometric Function of Quadrant Angles

In this section we find the trigonometrical function of quadrant
angles. Let’s start from 0◦ and 90◦. Look at the picture in fig. 6 and
apply the definition of trig function to get the following result.
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Fig. 7. Signs of trig functions

θ◦ θ, radians sin θ cos θ tan θ csc θ sec θ cot θ
0 0 0 1 0 undef. 1 undef.
90 π

2 1 0 undef. 1 undef. 0

Similarly one can get trig functions for remainder quadrant angles.

θ◦ θ, radians sin θ cos θ tan θ csc θ sec θ cot θ
180 π 0 −1 0 undef. −1 undef.

270 3π
2 −1 0 undef. −1 undef. 0

Exercise: Find the values of trig functions for 2π, −90◦, 35π.

2.3. Sign of Trigonometric Function

The signs of trig functions are given in fig. 7. One can get it
immediately from the definition of the functions.

2.4. Finding of Trig Function for Base Angles

From geometry we know the relationships of sides in the special
right triangles shewn in the fig. 8. It gives a possibility to find values of
trig function for several basic angles that are presented in the following
table.
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Fig. 8. Special triangles

θ◦ θ, radians sin θ cos θ tan θ csc θ sec θ cot θ

30 π
6

1
2

sqrt3
2

√
3

3 2 2
√

3
3

√
3

60 π
3

sqrt3
2

1
2

√
3 2

√
3

3 2
√

3
3

45 π
4

√
2

2

√
2

2 1
√

2
√

2 1

Exercise: Find values of

(1) sin 2π
3 ,

(2) cos 7π
6 ,

(3) tan 3π
4 .

Answer: (1)
√

3
2 , (2) −

√

3
2 , (3) -1.

2.5. Period of Trig Function

A function f is called periodic if there is a positive number p
such that whenever θ is in the domain of f , so is θ + p, and

f(θ + p) = f(θ).
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If there is the smallest such number p, its value is called the (fun-
damental) period of f .

It follows from the definition that the trig function are periodic
and satisfy the conditions below.

sin(θ + 2π) = sin(θ);
cos(θ + 2π) = cos(θ);
tan(θ + π) = tan(θ);

csc(θ + 2π) = csc(θ);
sec(θ + 2π) = sec(θ);
cot(θ + π) = cot(θ).

Example: Find the value of sin(390◦).
sin(390◦) = sin(360◦ + 30◦) = sin(30◦) = 1

2 . ⋄

Exercise: Find the value of cot(13π
4 ).

Answer: 1.

2.6. Even-Odd Properties of Trig Functions

Use definitions to verify the following properties of trig functions.

sin(−θ) = − sin(θ);
cos(−θ) = cos(θ);
tan(−θ) = − tan(θ);

csc(−θ) = − csc(θ);
sec(−θ) = sec(θ);
cot(−θ) = − cot(θ).

Example: Find the value of sin(−30◦).
sin(−30◦) = − sin(30◦) = −1

2 . ⋄

Example: Find the value of cot(7π
4 ).

cot(7π
4 ) = cot( (8−1)π

4 ) = cot(2π − π
4 ) = cot(−π

4 ) = − cot(7π
4 ) =

−1. ⋄

2.7. Problems

Find the value of following trig functions.

2.1. sin 11π
6 . 2.2. cos 4π

3 .
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2.3. sec 5π
4 .

2.4. csc 7π
4 .

2.5. tan 4π
3 .

2.6. cos 5π
3 .

2.7. cot 5π
6 .

2.8. sin 29π
6 .

2.9. cos 35π
3 .

2.10. tan 23π
3 .

2.8. Answers

2.1.−1
2 . 2.2.−1

2 . 2.3.−
√

2. 2.4.−
√

2. 2.5.
√

3. 2.6.1
2 .

2.7.−
√

3. 2.8.1
2 . 2.9.

√
3

2 . 2.10.−
√

3.

3. Graphs of Trigonometrical Functions. The Simplest
Equation and Inequalities

Graphs of six trigonometrical functions are given in the fig. 9-11.

Example: Use graph of sinx to solve the equation sinx = 0.
Solution: list x-intercepts of sinx to obtain x = 0,±π,±2π,±3π, ....
The general form of all that values is x = πk, where k is any integer.

Answer: x = πk, k ∈ Z. ⋄

Example: Use graph of cosx to solve the inequality cosx > 0 for
x ∈ [−π, π].

Solution: We should find all values of x from the segment [−π, π]
for which the graph is above the x− axis. They are −π

2 < x < π
2 . ⋄

Example: Use graph of cosx to solve the inequality cosx > 0 for
all real.

Solution: We should find all values of x for which the graph is
above the x− axis. Since y = cos(x) is periodic with period 2π we
should add 2πk to the result of the previous exercise.

Answer: −π
2 + 2πk < x < π

2 +
2πk, k ∈ Z. ⋄

Exercise: Find all solution of equation cosx = 0.

Answer: x = π
2 + πk, k ∈ Z.



4. BASIC TRIGONOMETRICAL IDENTITIES 98

Exercise: Find all solution of inequality tanx ≥ 0.

Answer: πk ≤ x < π
2 + πk, k ∈ Z.

4. Basic Trigonometrical Identities

This section is devoted to review of trigonometrical identities and
their application for simplifying expressions.

4.1. Pythagorean Identity

Let’s remain the Pythagorean Identity connecting sin and cosine
functions:

sin2 θ + cos2 θ = 1

If we divide both side of this identity by cos2θ or by sin2θ, we
will get the following useful identities.

1 + tan2 θ = sec2 θ 1 + cot2 θ = csc2 θ

Example: Symplify tan2 θ − 1
cos2 θ

.

Since tan θ = sin θ
cos θ we get tan2 θ− 1

cos2 θ
= sin2 θ

cos2 θ
−− 1

cos2 θ
= sin2 θ−1

cos2 θ
.

It follows from the Pythagorean Identity that sin2 θ−1 = − cos2 θ.

So we finally get sin2 θ−1
cos2 θ

= − cos2 θ
cos2 θ

= −1. ⋄

Exercise: Symplify cot2 θ − 1
sin2 θ

.

Exercise: Sumplify (sec θ − cot θ)(sec θ + cot θ).

Answer: 1.

4.2. Sum and Difference Formulas

cos(α+β) = cosα cosβ− sinα sinβ
cos(α−β) = cosα cosβ+ sinα sinβ
sin(α+ β) = sinα cosβ + cosα sinβ
cos(α−β) = sinα cosβ− cosα sinβ
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Fig. 9. Graphs of functions y = sinx and y = cosx
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Fig. 10. Graphs of functions y = tanx and y = cotx
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Fig. 11. Graphs of functions y = cscx and y = secx
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Example: Find the value of sin(− π
12).

sin(− π
12) = sin(π

4 − π
3 ) = sin π

4 cos π
3 − cosα sin π

3 =
√

2
2 × 1

2 −
√

2
2 ×√

3
2 =

√
2

4 −
√

6
4 =

√
2−

√
6

4 . ⋄

Exercise: Find the value of cos(75◦).

Answer:
√

6−
√

2
4 .

Exercise: Symplify

(1) sin(θ + π
2 ).

(2) cos(π − θ).

Answer: (1) cos θ. (2) − cos θ.

tan(α+ β) = tan α+tan β
1−tan α tan β

tan(α− β) = tan α−tan β
1+tan α tan β

Exercise: Find cot(105◦).

Answer: 1−
√

3
1+

√

3
.

Exercise: Symplify tan(θ + π
2 ); cot(3π

2 − θ).

Answer: − cot θ; tan θ.

4.3. Double-Angle Formulas

cos 2θ = cos2 θ − sin2 θ
sin 2θ = 2 sin θ cos θ
tan 2θ = 2 tan θ

1−tan2 θ

Example: Find sin 2θ, cos 2θ if sin θ = 5
13 and π

2 < θ < π.

Solution: By Pythagorean Identity cos2 θ+sinθ = 1, then cos2 θ =
1 − sin2 θ = 1 − 25

169 = 144
169 . Since π

2 < θ < π, cos θ must be negative,

so cos θ = −
√

144
169 = −12

13 .

Now sin 2θ = 2 sin θ cos θ = 2 5
13

(
−12

13

)
= −120

169 ;

cos(2θ) = cos2 θ − sin2 θ =
(
−12

13

)2 −
(

5
13

)2
= 119

169 . ⋄
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Exercise: Find sin 6θ if sin 3θ =
√

74 and π
6 < θ < pi

3 .

Answer:− 3
√

7
8 .

4.4. Half-angle Formulas

cos2 θ = 1+cos 2θ
2 ; sin2 θ = 1−cos 2θ

2

Exercise:Deduce half-angle formula for tan2 θ.

Exercise: Use half-angle formulas to rewrite sin2 θ cos2 θ
without using powers of trig functions.

4.5. Product-to-Sum Formulas

sinα sinβ = 1
2 [cos(α− β)− cos(α+ β)]

cosα cosβ = 1
2 [cos(α−β)+cos(α+β)]

sinα cosβ = 1
2 [sin(α+ β) + sin(α− β)]

Exercise: Express each product as a sum containing only sines
and cosines: (1) sin 3θ sin 6θ; (2) sin 3θ cos 6θ

4.6. Establishing the Identity

The direction ’establish the identity’ means to show, through the
use of basic identities and algebraic manipulation, that one side of an
equation is the same as the other side of the equation.

Example: Establish the identity: 1 − 1
2 sin 2θ = sin3 θ+cos3 θ

sin θ+cos θ .

Solution: sin3 θ+cos3 θ
sin θ+cos θ = (sin θ+cos θ)(sin2 θ−sin θ cos θ+cos2 θ)

sin θ+cos θ = sin2 θ −
sin θ cos θ + cos2 θ = sin2 θ + cos2 θ − sin θ cos θ = 1 − sin θ cos θ =
1 − 1

2 sin 2θ. ⋄

Exercise: Establish the identity: cos 73◦ cos 13◦−cos 17◦ cos 77◦

cos 123◦ cos 37◦−cos 33◦ cos 53◦ = 1
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4.7. Problems

4.1. Find csc θ if tan θ = 5
12 and θ is in Quadrant 3.

4.2. Find sin θ if cos θ = 12
13 and 3π

2 < θ < 2π.

4.3. Find sec θ if tan θ = 3
4 and π < θ < 3π

2 .

4.4. Find cot θ if sec θ = 25
7 and 3π

2 < θ < 2π.

4.5. Simplify
√

1
sin2 θ

− 1 if θ is in Quadrant 2.

4.6. Simplify
√

9 − 9 sin2 θ if −π
2 ≤ θ ≤ π

2

4.7. Find cos θ
2 if sin θ = −5

8 and 270◦ < θ < 360◦.

4.8. Find sin 4θ if sin θ = 4
5 and θ ∈ (pi

2 , π).

4.9. Rewrite cos4 θ without using powers of trig functions.
Simplify the expression.
4.10. cos4 θ − sin2 θ.
4.11. tan θ+sin θ

2 cos2 θ

2

.

4.12. cos 4θ+1
cot θ−tan θ .

Establish the identity.

4.13. sin4 θ+2 sin θ cos θ−cos4 θ
tan 2θ−1 = cos 2θ.

4.14. tan 2θ tan θ
tan 2θ−tan θ = sin 2θ.

4.15. 3 − 4 cos 2θ + cos 4θ = 8 sin4 θ.

4.8. Answers

4.1.−13
5 . 4.2.−25

13 . 4.3.−5
4 . 4.4.− 7

24 . 4.5.− cot θ. 4.6.3 cos θ.

5. Trig Equations. Inverse Trigonometrical Functions

In this section are presented examples of trig equations that re-
quire of application of different tools like substitution, factorising and
using trig identities.

Example: Solve the equation sin θ =
√

3
2 .

To solve the equation look at the fig. 12 and remember the defi-
nition of sine. One can see two angles — θ = π

3 and θ = π − π
3 = 2π

3

— that have sine value of
√

3
2 , so that the angles satisfy the equa-

tion. Since sine is periodic function of period 2π, the angles π
3 + 2πk,

2π
3 + 2πk also satisfy the equation for any integer k.
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Fig. 12. Solutions of the equation sin θ =
√

3
2

Answer: θ = π
3 + 2πk or 2π

3 + 2πk, k ∈ Z. ⋄

Example: Solve the equation 2 cos2 θ+cos θ−1 = 0, 0 ≤ θ < 2π.
Put t = cos θ. Then the initial equation is reduced to

2t2 + t− 1 = 0.

Factorising brings

(2t− 1)(t+ 1) = 0

and, so,
2t− 1 = 0 or t+ 1 = 0.

Then we have
t = 1

2 or t = −1;

cos θ = 1
2 or cos θ = −1.

Solution of last equations are shewn in the fig. 13. There are
θ = π

3 , θ = −π
3 and θ = π. ⋄

Example: Solve the equation 1
2 sin θ+

√
3

2 cos θ = 1 on 0 ≤ θ < 2π.
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Fig. 13. Solutions of the equations cos θ = 1
2 and

cos θ = −1

Solution: Denote that 1
2 = sin π

6 ,
√

3
2 = cosπ

6 . Then we can rewrite
the equation as

sin
π

6
sin θ + cos

π

6
cos θ = 1.

Use an addition formula to get

cos(θ − π

6
) = 1.

Draw the picture similarly to one at the previous example or look
at the graph of cosine function to get

θ − π

6
= 0

.
Finally, θ = π

6 . ⋄
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Fig. 14. Definition of Inverse Function

5.1. Inverse Function

If a function f : A→ B is injective, then one can solve x in terms
of y from the equation y = f(x) provided that y is in the range of f .
This defines the inverse function of the function f (see fig. 14).

Definition 5.1. Let f : A → B be a function. If there is a
function g : B → A such that f ◦ g is the identity on B and g ◦ f
is the identity on A, then the function f is called invertible and the
function g is called the inverse function of the function f .

The inverse function g is denoted by f−1. Do not confuse f−1(x)
with f(x)−1 = 1

f(x) !

5.2. Inverse Trig Function

Trig functions are not injective. Then to define an inverse func-
tion for any trig function, it is necessary to consider a restriction of
the function on the subset of its domain such that the restriction is
injective.

To define sin−1 (we will call it ‘arcsine’) we consider the function
y = sinx restricted on the set −π

2 < x < π
2 (see fig. 16).
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Fig. 15. y = sinx

Fig. 16. y = cosx

Definition 5.2. For any x ∈ [−1, 1] the function y = sin−1(x) =

arcsinx is the function which returns the angle y ∈ [−π
2 ,

pi
2 ] such that

sin y = x.

To define cos−1 (’arccosine’) we consider the function y = cosx
restricted on the set 0 < x < π (see fig. 16).

Definition 5.3. For any x ∈ [−1, 1] the function y = cos−1(x) =
arccosx is the function which returns the angle y ∈ [0, π] such that
cos y = x.

Definition 5.4. For any real x the function y = tan−1(x) =
arctanx is the function which returns the angle y ∈ [−π

2 ,
π
2 ] such that

tan y = x.
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Fig. 17. Graphs of functions y = arcsinx, y = arccosx

Definition 5.5. For any real x the function y = cot−1(x) =
arccot x is the function which returns the angle y ∈ [0, π] such that
cot y = x.

See graphs of inverse trig functions in the fig. 17, 18.

Example: Find arcsin 1
2 .

Solution: we should find an angle θ such that sin θ = 1
2 and θ ∈

[−π
2 ,

π
2 ]. That is θ = π

6 .

Answer: arcsin 1
2 = π

6 . ⋄

Exercise: Find value of

(1) arcsin(−1
2);

(2) arccos(1
2);

(3) arctan
√

3;
(4) arccot 1.
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Fig. 18. Graphs of functions y = arctanx, y = arccot x

Answer: (1) −π
6 ; (2) π

3 ; (3) π
3 ; (4) π

4 .

5.3. General Formulas for Solution of the Simplest
Trigonometric Equations

Here are given the general formulas for solution of simplest
trigonometric equations. Everywhere below k is any integer number.

equation solution alternative notation

sinx = a

{
x = arcsin a+ 2πk or
x = π − arcsin a+ 2πk

x = (−1)−1 arcsin a+ πk

cosx = a

{
x = arccos a+ 2πk or
x = − arccos a+ 2πk

x = ± arccos a+ 2πk

tanx = a x = arctan a+ πk
cotx = a x = arccot a+ πk

Exercise: Draw the picture illustrating the general formulas.

Exercise: Use the general formulas to solve equations.

(1) sinx = −1
2 ;

(2) cosx = 1
2 ;

(3) tanx =
√

3;



5. TRIG EQUATIONS. INVERSE TRIGONOMETRICAL FUNCTIONS 111

(4) cotx = 1.

Answer:

(1) x = (−1)k arcsin (− 1
2 ) + πk = (−1)k(−π

6 ) + πk = (−1)k+1 π
6 + πk,

k ∈ Z;
(2) x = ± arccos ( 1

2 ) + 2πk = ±π
3 + 2πk, k ∈ Z;

(3) x = arctan
√

3 + πk = π
3 + πk, k ∈ Z;

(4) x = arccot 1 + πk = π
4 + πk, k ∈ Z.

5.4. Problems

Solve equations.
5.1. sin2 θ + sin θ = 0 for 0 ≤ θ < 2π.
5.2. cos2 θ = 1.
5.3. sin θ =

√
3 cos θ for 0 ≤ θ < 2π.

5.4. sin 2θ = cos θ, 0 ≤ θ < 2π.
5.5. 2 sin2 θ − sin θ = 0, 0 ≤ θ < 2π.
5.6. cos θ − sin θ = 1, 0 ≤ θ < 2π.
5.7. tan2 θ = tan θ.
5.8. 2 sin2 θ − cos θ − 1 = 0, 0 ≤ θ < 2π.

5.5. Answers

5.1.θ ∈ {0, π, 3π
2 }. 5.2.θ = πk, k ∈ Z. 5.3.θ ∈ {π

3 ,
4π
3 }.

5.4.θ ∈ {π
6 ,

5π
6 ,

π
2 ,

3π
2 . 5.5.θ ∈ {0, π, π

2 }. 5.6.θ ∈ {0, 3π
2 }. 5.7.θ =

π
4 + πk, k ∈ Z. 5.8.θ ∈ {π

3 , π,
5π
3 }.



Question Cards for Examination

This book covers material of 1st semester. Detailed programme of
the course is given by table of contents. Here we append approximate
question cards for examination.

Card 1 (1) Number Systems: Natural numbers, Integers, Rational
numbers.

(2) Polynomial Functions. Linear Polynomial functions.

(3) Reduce the fraction
3
7

1.2 .

(4) Calculate 10.5−4.5·3.5
4 6

11
·(1 1

5
−1 1

2
)
.

(5) Simplify the expression 6
√

21
3 −

√
84 + 4

√

1 5
16 .

(6) Simplify the expression
(

a+b
a−b + a−b

a+b − a2+b2

a2−b2

)

· 2a2−2b2

a2+b2
.

(7) Solve the inequality |x+ 6| > −5.
(8) Find slope for linear function 3y + 6 = 0, graph it.
(9) Solve the inequality x2 − 9x + 20 < 0 and graph the

function y = x2 − 9x+ 20.
(10) Solve the inequality x4 + x3 − 20x2 ≤ 0 and graph the

function y = x4 + x3 − 20x2.
(11) Simplify the expression

√
x2 + 4 for x = 2tgθ with

−π
2 < x < π

2 .
Card 2 (1) Rules of actions with fractions.

(2) Piecewise Defined Functions.
(3) Reduce the fraction 540

960 .
(4) Convert 78% to a fraction.

(5) Simplify the expression
(
125x−6

) 2
3 .

(6) Calculate
5
√

6 + 2
√

17 · 5
√

6 − 2
√

17.

112
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(7) Solve the inequality |x+ 6| ≤ −2.
(8) Graph the function f(x) = |x+2| and find its values at

the points 4.2,−0.5, 8.
(9) Solve the inequality x

x−4 <
x−5
x+1 and graph the function

y = x
x−4 − x−5

x+1 .

(10) Use the graph of y = sinx to sketch the graph of y =
2 + 2sin(x− π

2 ).

(11) Solve the equation cosec22x = 2.
Card 3 (1) Converting of fractions.

(2) Power functions. Simple Deformations.
(3) Reduce the fraction 540

960 .
(4) Convert 0.65 to percentages.

(5) Simplify the expression
(
81a−8

)− 3
4 .

(6) Simplify the expression 4!+6!
6!−3! .

(7) Rewrite the equation of the following circle in canonical
form and use it to find the centre and the radius of the
circle: x2 − 6x+ y2 − 4y = −4. Also, graph this circle.

(8) Graph the function f(x) = |x− 3| and find its values at
the points 4.2,−0.5, 8.

(9) Solve the inequality x ≥ 16
x and graph the function y =

x− 16
x .

(10) Use the graph of y = cosx to sketch the graph of y =
−1 − 3cos(x+ π).

(11) Solve the equation
(

1
9

)2x−3
= 9 · 36x−10.

Card 4 (1) Irrational numbers: Algebraic numbers, Transcendental
numbers. Real numbers.

(2) Quadratic function. Quadratic Formula.
(3) Write the decimal 3.12(05) as the quotient of two nat-

ural numbers.
(4) Convert −0.6(7) to the quotient.

(5) Simplify the expression
6
√

x 3
√

x

x
−

7
9

.

(6) Simplify the expression (n+1)!+(n+3)!
n!−(n+2)! .
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(7) Rewrite the equation of the following circle in canonical
form and use it to find the centre and the radius of the
circle: 2x2 − 6x+ 2y2 − 4y = 0. Also, graph this circle.

(8) Graph the function f(x) = |x| and find its value:
|4.2|, | − 0.5|, |8|.

(9) Solve the inequality 2x3−6x
(x2−1)3

> 0 and graph the function

y = 2x3−6x
(x2−1)3

.

(10) Use the graph of y = ctgx to sketch the graph of y =
1 + ctg(x− π).

(11) Solve the equation 0.2 · 52−x = 25x−1.
Card 5 (1) Definition and Properties of Exponent, Rational Expo-

nent.
(2) Rational Inequalities.
(3) Write the decimal 0.3(22) as the quotient of two natural

numbers.
(4) Convert −5.8(45) to the quotient.

(5) Simplify the expression
5
√

a2 4
√

a−3

a
−

3
4

.

(6) Calculate C5
10.

(7) Rewrite the equation of the following circle in canonical
form and use it to find the centre and the radius of the
circle: x2 − x+ y2 + y = 1. Also, graph this circle.

(8) Draw the graph of the function y = |x− 1| + |x+ 3|.
(9) Solve the inequality x2(2x2−5x+3)

(x−4)2(3x−1)(x+2)
≤ 0 and graph the

function y = x2(2x2−5x+3)
(x−4)2(3x−1)(x+2)

.

(10) Use the graph of y = tgx to sketch the graph of y =
−2tg(x− π

2 ).

(11) Solve the equation
(
21

3

)x+4
=

(
3
7

)x2+1
.

Card 6 (1) Special Formulas.
(2) Angles and Their Measure. Trigonometric Functions.
(3) Write the fraction 7

16 as a decimal.

(4) Convert −85
9 to the decimal.

(5) Calculate ( 3
√

5 + 3
√

2)( 3
√

25 − 3
√

10 + 3
√

4).
(6) Calculate Ck

k+3.
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(7) Rewrite the equation of the following circle in canonical
form and use it to find the centre and the radius of the
circle: 3x2−6x+3y2−12y = −3. Also, graph this circle.

(8) Draw the graph of the function y = x− |x+ 2| + 3.
(9) Convert 1500 to radians.

(10) Use an formula to simplify sin(π
2 − x).

(11) Solve the equation 0.2 · 5x2−x = 125x−1.
Card 7 (1) The Binomial Theorem.

(2) Pythagorean Identities. Table for the values of the
trigonometric functions.

(3) Write the decimal −4.22 as the quotient of two positive
integers.

(4) Convert −31.48 to the quotient.

(5) Calculate
(

7
√

5
7 − 5

√
7
5

)2

.

(6) Expand (2x− 3)3 using the Binomial Theorem.
(7) Rewrite the equation of the following circle in canonical

form and use it to find the centre and the radius of the
circle: y2 + 2y + x2 − 2x = 0. Also, graph this circle.

(8) Draw the graph of the function y = |x+ 2| − 2|x− 3|.
(9) Convert 2π

5 to degrees.
(10) Use an formula to simplify cos(x

2 + π).
(11) Solve the equation lnx = 2ln3 − 2.

Card 8 (1) Absolute value.
(2) Graphs of Trigonometric Functions.
(3) Write the fraction −33

4 as a decimal.
(4) Convert 30% to a fraction.

(5) Simplify the expression 22
3x

2y8 ·
(
−11

2xy
3
)4

.

(6) Expand (a+ 2b)4 using the Binomial Theorem.
(7) Find the natural domain of the function f(x) =√

2x2 + 3x+ 1.
(8) Draw the graph of the function y = 3 − (x+ 2)2.
(9) Calculate by definition tg1500.

(10) Use formulas to simplify (sinx+ cosx)2.
(11) Solve the equation lg(3 − 5x) = 1

2 lg36 + lg2.
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Card 9 (1) Power function.
(2) Sum and Difference Formulas. Double-Angle and Half-

Angle Formulas.
(3) Calculate 0.15−0.15·6.4

− 3
8
+0.175

.

(4) Convert 1.44 to percentages.

(5) Simplify the expression
(
21

3a
4b8

)3 ·
(
−12

7a
5b12

)
.

(6) Expand (n−2)4+(n+2)4 using the Binomial Theorem.
(7) Find the natural domain of the function f(x) =

ln(−2x2 + 3x− 1).
(8) Draw the graph of the function y = −1 + (x− 1)3.
(9) Calculate by definition ctg(−2π

3 ).

(10) Use an formula to simplify tg(3x− 3π
2 ).

(11) Solve the equation log2(x
2+3x+3) = 0.5log24+log20.5.

Card 10 (1) Concept of a function. Graphs of Functions. Symmetry.
Monotonous Functions.

(2) The simplest Trigonometric Equations. Inverse Func-
tions.

(3) Calculate 3.2·1.5−6.3
1 2

15
·(1 1

2
− 2

5
)
.

(4) Prove that
4
√√

3 + 5 is algebraic.

(5) Simplify the expression a2n+5 : (an)
2

.
(6) Find all real solutions to ||x+ 2| − 3| = 3.
(7) Find the natural domain of the function f(x) =

4

√
x2−5x+4
x2−5x+6

.

(8) Draw the graph of the function y = 2 − (x− 2)4.
(9) Calculate by definition sec(−450).

(10) Use an formula to simplify ctg(π − 2x).
(11) Solve the equation 2x = 9.

Card 11 (1) Converting of fractions.
(2) Exponential function. The Number e.

(3) Calculate
−12.5·2.4+23 2

5

6 5
12

−1 3
8
·2 .

(4) Prove that
5
√

3
√

2 − 1 is algebraic.
(5) Simplify the expression xn−2 · x3−n · x.
(6) Find all real solutions to |2x− 1| + |x+ 2| = 2.
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(7) Find the natural domain of the function f(x) =

ln −x2+5x−4
2x2+5x+8

.

(8) Draw the graph of the function y = (x+ 1)5 − 2.
(9) Calculate by definition cosec(−3π

4 ).

(10) Find cos2x if cosx = 4
5 and 0 < x < π

2 .

(11) Solve the inequality
(

2
3

)2−x2

<
(

9
4

)2x+1
.

Card 12 (1) Rules of actions with fractions.
(2) Logarithmic Functions. The Natural Logarithm. Prop-

erties of Logarithmic Functions.

(3) Calculate
(−8.03:1.1+3.9)· 5

16

( 1
8
− 3

4
)·68 .

(4) Prove that
6
√

4
√

2 + 2 is algebraic.

(5) Simplify the expression
(

a+ b2

a−b

) (

1 − b3

a3+b3

)

(a+ b).

(6) Find all real solutions to | − x+ 1| < 3.
(7) Find the natural domain of the function f(x) =

3

√
1

2x2+5x+8
.

(8) Find the vertex of the parabola y = 2x2 − 8x + 7 and
graph it.

(9) Find cosx if tgx = −5 and 3π
2 < x < 2π.

(10) Find tgx if cos2x = −3
5 and π

2 < x < 3π
4 .

(11) Solve the inequality 4x − 4 · 2x + 3 ≥ 0.
Card 13 (1) Converting of fractions.

(2) Logarithmic and Exponential Equations and Inequali-
ties.

(3) Calculate (0.11·8.6−5.946):0.025

1 2
9
−1 5

18
·36 .

(4) Calculate −(−2.5)−1 ·(−2.5)2−(160)
1
2 −(0.2)−2+125

1
3 ·

0.2.
(5) Simplify the expression a−b

a
1
3 −b

1
3

− a+b

a
1
3 +b

1
3

.

(6) Find all real solutions to x2 + |x− 2| < 1.
(7) Find x-intercept and y-intercept for linear function 2x+

3y + 6 = 0, graph it.
(8) Factorize quadratic expression y = 2x2 − 8x + 7 and

graph it.
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(9) Find sinx if tgx = 7
4 and π < x < 3π

2 .

(10) Solve the equation 2cos2x− sinx = 1.
(11) Solve the inequality lnx2 + 4lnx+ ln1 > 0.

Card 14 (1) Irrational numbers: Algebraic numbers, Transcendental
numbers. Real numbers.

(2) Sum and Difference Formulas. Double-Angle and Half-
Angle Formulas.

(3) Calculate −0.032·10.25+0.118
1:(5 2

7
−2 8

21
·2) .

(4) Calculate (−1.5)−3− (2
5)

−4 · (2
5)

3−
(

(4
9)

0.8
)0

+16
3
4 ·0.5.

(5) Simplify the expression a3−b3

a+b :
(

a+ b2

b+a

)

− b2

b+a · a2−b2

b2+ab
.

(6) Find all real solutions to | − x+ 1| < 3.
(7) Find x-intercept and y-intercept for linear function

12x− 3y + 24 = 0, graph it.
(8) Factorize quadratic expression y = −x2 − 2x− 1.
(9) Find tgx if cosecx = −5

4 and π
2 < x < π.

(10) Solve the equation 3sin2x = −1.
(11) Solve the inequality log 1

2
(x2 + 3x+ 3) ≤ 8.

Card 15 (1) Special Formulas.
(2) Angles and Their Measure. Trigonometric Functions.
(3) Calculate 6.25·4.8−23.4

(2 3
4
·2−12 5

6
):5

.

(4) Simplify the expression 10
√

2
5 − 0.5

√
160 + 3

√

11
9 .

(5) Simplify the expression
(

x+2
x+1 − 8x2−8

x3−1
: 4x+4

x2+x+1

)

: 1
x+1 .

(6) Solve the inequality |x2 − 9| ≥ 4.
(7) Find slope for linear function x− 3y + 2 = 0, graph it.
(8) Factorize quadratic expression y = −2x2 + 8 and graph

it.
(9) Simplify the expression (sec4x− 1)(sec4x+ 1).

(10) Solve the equation tg2x− 4 = 0.
(11) Solve the equation ctg2x− 3ctgx+ 2 = 0.
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