ОПРЕДЕЛЕНИЕ ЭКОНОМИЧЕСКОГО СОСТОЯНИЯ ХОЗЯЙСТВУЮЩИХ СУБЪЕКТОВ ПРИ ПРОТИВОПОЛОЖНЫХ ИНТЕРЕСАХ ЗАИНТЕРЕСОВАННЫХ СТОРОН

Ф.Ф. Юрлов, Д.Н. Лапаев

Нижегородский государственный технический университет

Приведена методика выбора компромиссных решений при определении экономического состояния хозяйствующих субъектов для случаев противоположных интересов заинтересованных сторон, базирующаяся на принципе Парето.

В соответствии с подходами, развиваемыми в теории стратегического менеджмента при определении экономического состояния хозяйствующих субъектов необходим анализ внешней среды [1]. Внешняя среда анализируется на двух уровнях иерархии: микроуровне и макроуровне. Микроуровень представляет ближнее окружение субъекта хозяйствования и включает в себя: поставщиков, потребителей, конкурентов, инвесторов, кредиторов и т.д. Макроуровень представлен: различными органами власти, финансово-кредитной политикой, налоговой политикой, социально-политической обстановкой, демографической обстановкой, научнотехническим прогрессом, природно-климатическими условиями и т. д.

Наличие указанных участников микро- и макросреды приводит к противоречиям следующих видов.

- 1) Противоречия между интересами хозяйствующего субъекта и микросредой.
- 2) Противоречия между интересами хозяйствующего субъекта и макросредой.
- 3) Противоречия между элементами микросреды.
- 4) Противоречия между представителями макросреды.
- 5) Противоречия между микро- и макросредой.

В существующей экономической литературе учету данных противоречий уделяется недостаточное внимание. Особенно это относится к количественному анализу рассматриваемой проблемы. На практике интересы заинтересованных сторон, как правило, не являются полностью совпадающими. Возможны конфликтные ситуации, в которых интересы участников являются прямо противоположными. Типичным примером такой ситуации может, например, служить позиция собственников и кредиторов по вопросу банкротства хозяйствующего субъекта. Следовательно, возникает необходимость принятия решений, базирующихся на определенных схемах компромисса [2, 3, 4]. В данной статье рассматривается вопрос выбора эффективных решений при сравнительной оценке экономического состояния хозяйствующих субъектов основанный на принципе Парето с позиций двух заинтересованных сторон.

Допустим, что экономическое состояние хозяйствующих субъектов (альтернатив) оценивается по двум показателям К1 и К2. В процессе определения экономического состояния с позиций каждой из заинтересованных сторон возможны четыре варианта предпочтительных направлений изменения выбранных показателей.

Ситуация 1. В данной ситуации экономическое состояние хозяйствующих субъектов улучшается при одновременном увеличении значений показателей К1 и К2. Таковыми показателями, в частности, могут быть: прибыль и рентабельность, индекс доходности и чистый дисконтированный доход и т. п.

Ситуация 2. В данном случае считается, что экономическое состояние хозяйствующих субъектов улучшается при одновременном уменьшении значений по-казателей К1 и К2. Таковыми показателями могут являться: себестоимость продукции и капитальные вложения, срок окупаемости и эксплуатационные расходы и т л

Указанные ситуации характеризуются однонаправленными показателями.

Ситуация 3. Считается, что экономическое состояние хозяйствующих субъектов улучшается при уменьшении показателя К1 и увеличении показателя К2.

Ситуация 4. В этом случае экономическое состояние хозяйствующих субъектов улучшается при увеличении показателя К1 и уменьшении показателя К2.

Ситуации 3 и 4 характеризуются разнонаправленными показателями. К ним можно отнести: индекс доходности и срок окупаемости, интегральный эффект и капитальные вложения и т. д.

Таким образом, противоположными будут два варианта оценок: ситуация 1 и ситуация 2 при однонаправленных показателях, ситуация 3 и ситуация 4 при разнонаправленных показателях.

Введем следующие обозначения: $K1_{max}$ — максимальное значение показателя K1, $K2_{K1max}$ — соответствующее ему значение показателя K2; $K2_{max}$ — максимальное значение показателя K2, $K1_{K2max}$ — соответствующее ему значение показателя K1; $K1_{min}$ — минимальное значение показателя K1, а $K2_{K1min}$ — соответствующее ему значение показателя K2, а $K1_{K2min}$ — соответствующее ему значение показателя K2, а $K1_{K2min}$ — соответствующее ему значение показателя K1.

Запишем выражения, определяющие области допустимых значений показателей К1 и К2 на первом этапе анализа.

В ситуации 1 область допустимых значений показателей ОДЗ1 имеет вид:

$$\begin{cases} K1 \in [K1_{K2max}, K1_{max}], \\ K2 \in [K2_{K1max}, K2_{max}]. \end{cases}$$
 (1)

В ситуации 2 область допустимых значений показателей ОДЗ1 определяется следующим образом:

$$\begin{cases} K1 \in [K1_{\min}, K1_{K2\max}], \\ K2 \in [K2_{\min}, K2_{K1\max}]. \end{cases}$$
 (2)

В ситуации 3 область допустимых значений показателей ОДЗ1 имеет вид:

$$\begin{cases} K1 \in [K1_{\min}, K1_{K2\max}], \\ K2 \in [K2_{K1\min}, K2_{\max}]. \end{cases}$$
 (3)

В ситуации 4 область допустимых значений показателей ОДЗ1 определяется следующим образом:

$$\begin{cases} K1 \in [K1_{K2min}, K1_{max}], \\ K2 \in [K2_{min}, K2_{K1max}]. \end{cases}$$
 (4)

Рассмотрим случаи противоположных интересов участников при однонаправленных показателях (ситуации 1 и 2).

В данном случае один из участников оценивает ситуацию с позиции максимизации обоих показателей, а другой — с позиции их минимизации.

С позиции первого участника на начальной стадии анализа область допустимых значений ОДЗ1 определяется выражением (1), а с позиции второго - выражением (2).

Определим возможное совместное решение по показателю K1. Оно будет зависеть от положения альтернатив с координатами $K1_{K2max}$ и $K1_{K2min}$.

Очевидно, что общее решение по показателю K1 возможно в ситуации, когда $K1_{K2min} \ge K1_{K2max}$. Данное решение имеет следующий вид: $K1 \in [K1_{K2max}, K1_{K2min}]$.

Аналогично, определим возможное совместное решение по показателю K2, которое будет зависеть от расположения альтернатив с координатами $K2_{K1min}$.

Здесь также возможно совместное решение: $K2 \in [K2_{K1max}, K2_{K1min}]$. Для этого необходимо выполнение неравенства: $K2_{K1min} \ge K2_{K1max}$.

Таким образом, условием существования совместной области допустимых значений показателей ОД31 Σ при однонаправленных показателях является необходимость выполнения двух неравенств:

$$\begin{cases} K1_{K2\min} \ge K1_{K2\max}, \\ K2_{K1\min} \ge K2_{K1\max}. \end{cases}$$
 (5)

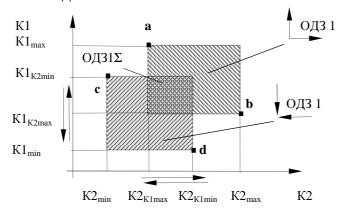
При этом область совместных допустимых значений ОДЗ1Σ имеет вид:

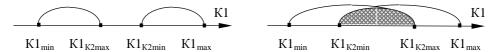
$$\begin{cases} K1 \in [K1_{K2max}, K1_{K2max}], \\ K2 \in [K2_{K1max}, K2_{K1max}]. \end{cases}$$
 (6)

Проиллюстрируем данные выводы следующим примером (рис.1).

В наиболее общем случае на начальной стадии анализа на плоскости (К1, К2) можно выделить четыре эффективных субъекта хозяйствования. Здесь альтернатива а имеет наибольшее значение показателя К1; альтернатива b имеет наибольшее значение показателя К2; альтернатива с имеет наименьшее значение показателя К2; альтернатива d имеет наименьшее значение показателя К1.

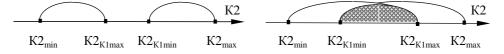
Область, ограниченная альтернативами а и b, является областью допустимых значений в ситуации 1. Область, ограниченная альтернативами с и d, является областью допустимых значений в ситуации 2. Обе области обозначены соответствующей штриховкой. Двойной штриховкой показана совместная область допустимых значений ОД31 Σ .




Рис. 1. Совместное решение в ситуациях 1 и 2

Рассмотрим случаи противоположных интересов участников при разнонаправленных показателях (ситуации 3 и 4).

В данном случае один из участников оценивает ситуацию с позиции минимизации показателя К1 и максимизации показателя К2, а другой — с позиции максимизации показателя К1 и минимизации показателя К2.


С позиции первого участника на начальном этапе анализа область допустимых значений ОДЗ1 для показателей К1 и К2 определяется выражением (3), а с позиции второго — выражением (4).

Определим возможное совместное решение по показателю K1. Оно, как и в предыдущем случае, будет зависеть от положения альтернатив с координатами $K1_{K2max}$ и $K1_{K2min}$.

Очевидно, что общее решение по показателю K1: $K1 \in [K1_{K2min}, K1_{K2max}]$, возможно при выполнении условия: $K1_{K2min} \le K1_{K2max}$.

Аналогично, определим возможное совместное решение по показателю K2, которое будет зависеть от расположения альтернатив с координатами $K2_{K1min}$.

Совместное решение по показателю K2: $K2 \in [K2_{K1min}, K2_{K1max}]$ возможно при выполнении условия: $K2_{K1min} \le K2_{K1max}$.

Таким образом, условием существования совместной области допустимых значений показателей ОДЗ1 Σ при разнонаправленных показателях является необходимость выполнения двух неравенств:

$$\begin{cases} K1_{K2\min} \ge K1_{K2\max}, \\ K2_{K1\min} \ge K2_{K1\max}. \end{cases}$$
 (7)

При этом область совместных допустимых значений ОДЗ1Σ имеет вид:

$$\begin{cases} K1 \in [K1_{K2max}, K1_{K2max}], \\ K2 \in [K2_{K1max}, K2_{K1max}]. \end{cases}$$
 (8)

Для иллюстрации результатов приведем следующий пример (рис. 2).

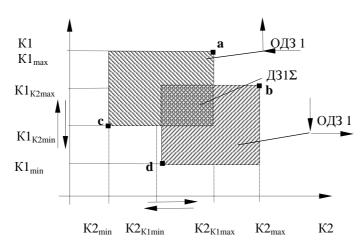


Рис. 2. Совместные решения в ситуациях 3 и 4

Область, ограниченная альтернативами а и с, является областью допустимых значений в ситуации 4. Область, ограниченная альтернативами b и d, является областью допустимых значений в ситуации 3. Обе области обозначены соответствующей штриховкой. Здесь же двойной штриховкой показана совместная область допустимых значений $OJ31\Sigma$.

В обоих случаях противоположных интересов участников дальнейший анализ необходимо производить согласно изложенной ранее методике. Единственным отличием является следующее. Поиск эффективных альтернатив необходимо осуществлять применительно к совместным областям допустимых значений анализируемых показателей, причем выражения (5)–(8) справедливы для любой стадии итерации.

Проиллюстрируем указанную методику следующим примером (рис. 3). Рассматривается ситуация однонаправленных показателей.

В данном случае альтернатива 2 имеет максимальное значение показателя К1 и, одновременно, минимальное значение показателя К2. Альтернатива 4 имеет

наименьшее значение показателя К1, а альтернатива 5 — наибольшее значение показателя К2.

Проверяем условия существования совместной области допустимых значений показателей ОД 31Σ на первой итерации согласно (5).

Будем иметь:

$$\begin{cases} K1_2 \ge K1_5, \\ K2_4 \ge K2_2. \end{cases}$$

Следовательно, условия выполняются и в соответствии с (6) ОДЗ1 Σ определится следующим образом:

$$\begin{cases} K1 \in [K1_5, K1_2], \\ K2 \in [K2_2, K2_4]. \end{cases}$$

Здесь нижний индекс обозначает порядковый номер альтернативы.

Альтернатива 2 будет являться эффективной, т.к. она принадлежит обеим областям допустимых значений. Суммарная область допустимых значений содержит альтернативу 3, поэтому, необходим дополнительный анализ.

На втором этапе анализа альтернативы 2 и 3 являются эффективными в каждой из двух рассматриваемых ситуаций. Следовательно, индивидуальные области допустимых значений совпадут между собой и составят совместную область ОДЗ2 Σ . По результатам двухшаговой итерационной процедуры законченное множество эффективных решений примет вид: $M_{\text{эф}\Sigma} = \{2, 3\}$.

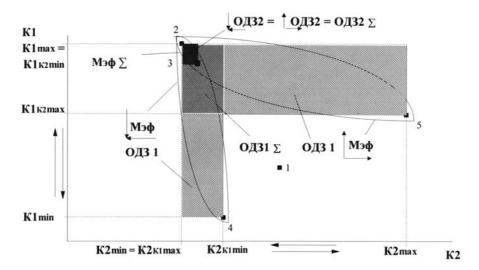


Рис. 3. Совместные решения при однонаправленных показателях

Таким образом, для случая противоположных интересов участников получены следующие результаты.

- 1. Определены условия, при которых будет иметь место область совместных допустимых значений показателей.
 - 2. Определены границы области совместных допустимых значений.

- 3. Последовательное применение указанной процедуры позволит, в конечном счете, определить совместные эффективные решения, если таковые имеются.
- 4. Предложенная методика является действенным инструментом выбора, доступным для практического применения различным заинтересованным сторонам.
- 5. Методика позволяет учесть противоречия двух видов: противоречия между показателями выбора эффективных решений, противоречия между интересами участников.

Литература

- 1. Ансофф И. Стратегическое управление: Пер. с англ. / Под ред. Л. И. Евенко. М.: Экономика, 1989.
- 2. Плеханова А.Ф. Анализ проблем сопоставимости и многокритериальности решений, принимаемых в экономике. Н. Новгород: Нижегород. гос. тех. ун-т, 1999. 135 с.
- 3. Юрлов Ф.Ф., Яшин С.Н., Яшина Н.И. Оценка экономического состояния хозяйствующих субъектов для инвестирования. Н. Новгород: Нижегород. гос. тех. ун-т, 2001. 145 с.
- 4. Юрлов Ф.Ф., Плеханова А.Ф., Маркитанов М.Ю. Выбор эффективных решений в экономике. Н. Новгород: Нижегород. гос. тех. ун-т, 2004. 115 с.